-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathWeighter.py
349 lines (283 loc) · 13.4 KB
/
Weighter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
'''
Created on 26 Feb 2017
@author: jkiesele
'''
from __future__ import print_function
import numpy as np
import matplotlib
#if no X11 use below
matplotlib.use('Agg')
class Weighter(object):
'''
contains the histograms/input to calculate jet-wise weights
'''
def __init__(self):
self.Axixandlabel=[]
self.axisX=[]
self.axisY=[]
self.hists =[]
self.removeProbabilties=[]
self.binweights=[]
self.distributions=[]
self.red_distributions=[]
self.xedges=[np.array([])]
self.yedges=[np.array([])]
self.classes=[]
self.red_classes=[]
self.class_weights=[]
self.refclassidx=0
self.undefTruth=[]
self.truth_red_fusion = []
def __eq__(self, other):
'A == B'
def _all(x):
if hasattr(x, 'all'):
return x.all()
if hasattr(x, '__iter__'):
return all(x)
else: return x
def comparator(this, that):
'compares lists of np arrays'
return _all((i == j).all() for i,j in zip(this, that))
#empty
if len(self.Axixandlabel) == len(other.Axixandlabel) and len(self.Axixandlabel) == 0:
return True
return self.Axixandlabel == other.Axixandlabel and \
_all(self.axisX == other.axisX) and \
_all(self.axisY == other.axisY) and \
comparator(self.hists, other.hists) and \
comparator(self.removeProbabilties, other.removeProbabilties) and \
self.classes == other.classes and \
self.refclassidx == other.refclassidx and \
self.undefTruth == other.undefTruth and \
comparator(self.binweights, other.binweights) and \
comparator(self.distributions, other.distributions) and \
_all(self.xedges == other.xedges) and \
_all(self.yedges == other.yedges)
def __ne__(self, other):
'A != B'
return not (self == other)
def setBinningAndClasses(self,bins,nameX,nameY,classes, red_classes = [-1], truth_red_fusion = [-1], method='isB'):
if method == 'flatten' and red_classes == [-1]:
raise Exception('You didnt define the reduced classes for the flatten method correctly. Create a list with your reduced classes and call it in the setBinningAndClasses function with red_classes = ')
if method == 'flatten' and truth_red_fusion == [-1]:
raise Exception('You didnt define the fusion for the truth classes for the flatten method correctly. Create a list where each entry is also a list with all the truth classes to fusion into a reduced class. The entries of the reduced classes and fusion list must follow the same order, ie : the truth classes to fusion for the first reduced class is the first element of your fusion list. Then call it in the setBinningAndClasses function with thruth_red_fusion = ')
self.axisX= bins[0]
self.axisY= bins[1]
self.nameX=nameX
self.nameY=nameY
self.classes=classes
self.red_classes = red_classes
self.truth_red_fusion = truth_red_fusion
if len(self.classes)<1:
self.classes=['']
if len(self.red_classes)<1:
self.red_classes=['']
if len(self.truth_red_fusion)<1:
self.truth_red_fusion=['']
def addDistributions(self,Tuple, norm_h = True):
selidxs=[]
ytuple=Tuple[self.nameY]
xtuple=Tuple[self.nameX]
useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0
if not useonlyoneclass:
labeltuple=Tuple[self.classes]
for c in self.classes:
selidxs.append(labeltuple[c]>0)
else:
selidxs=[np.zeros(len(xtuple),dtype='int')<1]
for i, label in enumerate(self.classes):
#print('axis-X binning :')
#print(self.axisX)
#print('axis-Y binning :')
#print(self.axisY)
tmphist,xe,ye=np.histogram2d(xtuple[selidxs[i]],ytuple[selidxs[i]],[self.axisX,self.axisY],normed=norm_h)
self.xedges=xe
self.yedges=ye
if len(self.distributions)==len(self.classes):
self.distributions[i]=self.distributions[i]+tmphist
else:
self.distributions.append(tmphist)
def printHistos(self,outdir):
def plotHist(hist,outname, histname):
import matplotlib.pyplot as plt
H=hist.T
fig, ax0 = plt.subplots()
X, Y = np.meshgrid(self.xedges, self.yedges)
im = ax0.pcolormesh(X, Y, H)
#fig.colorbar(im, ax=ax)
if self.axisX[0]>0:
ax0.set_xscale("log", nonposx='clip')
else:
ax0.set_xlim([self.axisX[1],self.axisX[-1]])
ax0.set_xscale("log", nonposx='mask')
plt.colorbar(im, ax = ax0)
ax0.set_title(histname)
fig.savefig(outname)
plt.close()
for i in range(len(self.red_classes)):
if len(self.red_distributions):
plotHist(self.red_distributions[i],outdir+"/dist_"+self.red_classes[i]+".png",self.red_classes[i]+" distribution")
#plotHist(self.removeProbabilties[i] ,outdir+"/remprob_"+self.classes[i]+".pdf")
#plotHist(self.binweights[i],outdir+"/weights_"+self.classes[i]+".pdf")
#reshaped=self.distributions[i]*self.binweights[i]
#plotHist(reshaped,outdir+"/reshaped_"+self.classes[i]+".pdf")
def createRemoveProbabilitiesAndWeights(self,referenceclass='isB'):
referenceidx=-1
if referenceclass != 'flatten':
try:
referenceidx=self.classes.index(referenceclass)
except:
print('createRemoveProbabilities: reference index not found in class list')
raise Exception('createRemoveProbabilities: reference index not found in class list')
if len(self.classes) > 0 and len(self.classes[0]):
self.Axixandlabel = [self.nameX, self.nameY]+ self.classes
else:
self.Axixandlabel = [self.nameX, self.nameY]
self.refclassidx=referenceidx
refhist=np.zeros((len(self.axisX)-1,len(self.axisY)-1), dtype='float32')
refhist += 1
if referenceidx >= 0:
refhist=self.distributions[referenceidx]
refhist=refhist/np.amax(refhist)
if referenceclass == 'flatten':
temp = []
for k in range(len(self.red_classes)):
temp.append(0)
for i, label in enumerate(self.classes):
if label in self.truth_red_fusion[k]:
temp[k] = temp[k] + self.distributions[i]
for j in range(len(temp)):
threshold_ = np.median(temp[j][temp[j] > 0]) * 0.01
nonzero_vals = temp[j][temp[j] > threshold_]
ref_val = np.percentile(nonzero_vals, 25)
self.red_distributions = temp
def divideHistos(a,b):
out=np.array(a)
for i in range(a.shape[0]):
for j in range(a.shape[1]):
if b[i][j]:
out[i][j]=a[i][j]/b[i][j]
else:
out[i][j]=-10
return out
reweight_threshold = 15
max_weight = 1
raw_hists = {}
class_events = {}
result = {}
probhists=[]
weighthists=[]
if referenceclass=='flatten':
for i, label in enumerate(self.red_classes):
raw_hists[label] = self.red_distributions[i].astype('float32')
result[label] = self.red_distributions[i].astype('float32')
for label, classwgt in zip(self.red_classes, self.class_weights):
hist = result[label]
threshold_ = np.median(hist[hist > 0]) * 0.01
nonzero_vals = hist[hist > threshold_]
ref_val = np.percentile(nonzero_vals, reweight_threshold)
# wgt: bins w/ 0 elements will get a weight of 0; bins w/ content<ref_val will get 1
wgt = np.clip(np.nan_to_num(ref_val / hist, posinf=0), 0, 1)
result[label] = wgt
# divide by classwgt here will effective increase the weight later
class_events[label] = np.sum(raw_hists[label] * wgt) / classwgt
min_nevt = min(class_events.values()) * max_weight
for label in self.red_classes:
class_wgt = float(min_nevt) / class_events[label]
result[label] *= class_wgt
for label in self.classes:
for i, red_label in enumerate(self.red_classes):
if label in self.truth_red_fusion[i]:
weighthists.append(result[red_label])
probhists.append(1 - result[red_label])
self.removeProbabilties=probhists
self.binweights=weighthists
else:
for i in range(len(self.classes)):
#print(self.classes[i])
tmphist=self.distributions[i]
#print(tmphist)
#print(refhist)
if np.amax(tmphist):
tmphist=tmphist/np.amax(tmphist)
else:
print('Warning: class '+self.classes[i]+' empty.')
ratio=divideHistos(refhist,tmphist)
ratio=ratio/np.amax(ratio)#norm to 1
#print(ratio)
ratio[ratio<0]=1
ratio[ratio==np.nan]=1
ratio = ratio
weighthists.append(ratio)
ratio=1-ratio#make it a remove probability
probhists.append(ratio)
self.removeProbabilties=probhists
self.binweights=weighthists
#make it an average 1
for i in range(len(self.binweights)):
self.binweights[i]=self.binweights[i]/np.average(self.binweights[i])
def createNotRemoveIndices(self,Tuple):
if len(self.removeProbabilties) <1:
raise Exception('removeProbabilties bins not initialised. Cannot create indices per jet')
tuplelength=len(Tuple)
notremove=np.zeros(tuplelength)
counter=0
xaverage=[]
norm=[]
yaverage=[]
useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0
for c in self.classes:
xaverage.append(0)
norm.append(0)
yaverage.append(0)
for jet in iter(Tuple[self.Axixandlabel]):
binX = self.getBin(jet[self.nameX], self.axisX)
binY = self.getBin(jet[self.nameY], self.axisY)
for index, classs in enumerate(self.classes):
if useonlyoneclass or 1 == jet[classs]:
rand=np.random.ranf()
prob = self.removeProbabilties[index][binX][binY]
if rand < prob and index != self.refclassidx:
#print('rm ',index,self.refclassidx,jet[classs],classs)
notremove[counter]=0
else:
#print('keep',index,self.refclassidx,jet[classs],classs)
notremove[counter]=1
xaverage[index]+=jet[self.nameX]
yaverage[index]+=jet[self.nameY]
norm[index]+=1
counter += 1
break
else:
counter += 1
if not len(notremove) == counter:
raise Exception("tuple length must match remove indices length. Probably a problem with the definition of truth classes in the ntuple and the TrainData class")
return notremove
def getJetWeights(self,Tuple):
countMissedJets = 0
if len(self.binweights) <1:
raise Exception('weight bins not initialised. Cannot create weights per jet')
weight = np.zeros(len(Tuple))
jetcount=0
useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0
for jet in iter(Tuple[self.Axixandlabel]):
binX = self.getBin(jet[self.nameX], self.axisX)
binY = self.getBin(jet[self.nameY], self.axisY)
for index, classs in enumerate(self.classes):
if 1 == jet[classs] or useonlyoneclass:
weight[jetcount]=(self.binweights[index][binX][binY])
jetcount=jetcount+1
print ('weight average: ',weight.mean())
return weight
def getBin(self,value, bins):
"""
Get the bin of "values" in axis "bins".
Not forgetting that we have more bin-boundaries than bins (+1) :)
"""
for index, bin in enumerate (bins):
# assumes bins in increasing order
if value < bin:
return index-1
#print (' overflow ! ', value , ' out of range ' , bins)
return bins.size-2