diff --git a/cag/framework/analyzer/Readme.md b/cag/framework/analyzer/Readme.md new file mode 100644 index 0000000..1495961 --- /dev/null +++ b/cag/framework/analyzer/Readme.md @@ -0,0 +1,181 @@ +## Query Builder +### Overview +The Query Builder can be used to build an ArangoDB query (AQL query) to query a given graph pattern. The graph pattern is defined in a JSON structure (see below). +### Usage +##### Database Configuration +In order to connect to the database, please provide the database connection details in a configuration object of type `cag.utils.config.Config`: + + my_config = Config( + url=:, + user=, + password=, + database=, + graph= + ) + +##### Database Configuration +Furthermore, it is required to specify the graph pattern, that should be queried, as a json object. The graph pattern object is of type `GraphData` and looks like this: + +*GraphData:* +Contains two lists. + + nodes: list[NodeDTO] + edges: list[EdgeDTO] + +*NodeDTO*: +Each node must have an id (can be arbitrary chosen), a collection name (must match to a vertex collection name in the database) and filter properties, provided as a list of objects. + + id: str + collection: str + userData: list[UserData] + +*EdgeDTO*: +Each edge must have an id (can be arbitrary chosen), a source and target (which reference the corresponding node ids), a collection name (must match to an edge collection name in the database) and filter properties, provided as a list of objects. + + id: str + source: str + target: str + name: str + userData: list[UserData] + +*UserData*: +Userdata defines properties that documents should be filtered with (e.g. to filter only documents with a certain property). If any conditions are provided, they must contain the attribute name (i.e. property name of the collection in the database), its data type ("text", "number", "date" or "datetime"), the operator to use and the filter value. + + attribute: str + attributeType: str + operator: OperatorEnum + value: str + +*OperatorEnum*: +Within userData, the operator can be of any of the following values: + + CONTAINS + CONTAINS_NOT + EQUALS + EQUALS_NOT + ALPHABETIC_CONTAINS + ALPHABETIC_CONTAINS_NOT + ALPHABETIC_STARTS_WITH + ALPHABETIC_ENDS_WITH + NUMERIC_EQUALS + NUMERIC_SMALLER_THAN + NUMERIC_SMALLER_OR_EQUAL + NUMERIC_LARGER_THAN + NUMERIC_LARGER_OR_EQUAL + DATE_SMALLER_THAN + DATE_SMALLER_OR_EQUAL + DATE_LARGER_THAN + DATE_LARGER_OR_EQUAL + +A valid example of `graph_data` could look like this: + + { + "nodes":[ + { + "id":"0", + "collection":"Person", + "userData":[ + { + "attribute":"name", + "attributeType":"text", + "operator": "alphabetic_contains", + "value":"Bob", + } + ] + }, + { + "id":"1", + "collection":"Document", + "userData":[ + { + "attribute":"title", + "attributeType":"text", + "operator": "alphabetic_contains", + "value":"Climate Change", + } + ] + } + ], + "edges":[ + { + "id":"0", + "source":"0", + "target":"1", + "name":"Wrote", + "userData": [ + { + "attribute":"timestamp", + "attributeType":"datetime", + "operator": "date_smaller_than", + "value":"2023-11-24T23:00:00.000Z", + } + ] + } + ], + } +It indicates that a Person whose name contains the string "Bob" wrote a Document whose title contains "Climate Change" before the date 2023-11-24. + +##### Query Generation +Next create a new QueryBuilder object using this configuration: + + query_builder = QueryBuilder(my_config) + +Finally, call the `_generate_aql_graph_query()` function to generate the AQL query, ready to be executed: + + aql_query, bind_vars = query_builder.generate_aql_graph_query(graph_data, max_start_nodes=444, max_paths=555) + +`max_start_nodes` denotes the maximum number of documents to be obtained in the first part of the query (see LIMIT 444 below). `max_paths` denotes the maximum number of paths to be obtained, before the graph traversal halts (see LIMIT 555 below). + +`aql_query` contains the actual AQL query. It is parameterized, meaning that field names and values are replaced with respective parameter names (e.g. "@field_xy"). The corresponding mapping is stored in `bind_vars`. + +A generated query typically looks like the following example, corresponding to the above example of `graph_data`: + + LET doc_0 = FLATTEN( + FOR p IN Person + FILTER CONTAINS(LOWER(p.@field_bvsRP4nK2b), LOWER(@value_F83IiG4DIU)) /* "name" contains "Bob" */ + LIMIT 444 + RETURN doc + ) + + LET start_nodes = UNION(doc_0, []) + + /* For each start node, start finding a path */ + FOR start_node IN start_nodes + /* Each Edge has the corresponding direction specified to make querying faster */ + FOR v, e, p IN @min..@max ANY start_node OUTBOUND Wrote + OPTIONS { vertexCollections: @vertex_collections, edgeCollections: @edge_collections } + FILTER ( + ( + ( + IS_SAME_COLLECTION(p.vertices[0], @w2SVniSu3W) /* Vertex at index 0 is of "Person" collection */ + ) + AND + ( + CONTAINS(LOWER(p.vertices[0].@field_5E8ggp4h39), LOWER(@value_IiTNm4EVbU)) /* "name" contains "Bob" */ + ) + AND + ( + p.edges[0].@field_ktvTx42cK9 < DATE_ISO8601(@value_7sOZ02Ctnf) /* "timestamp" before "2023-11-24T23:00:00.000Z" */ + ) + AND + ( + IS_SAME_COLLECTION(p.vertices[1], @DxJ8jHKDO0) /* Vertex at index 1 is of "Document" collection */ + ) + AND + ( + CONTAINS(LOWER(p.vertices[1].@field_5x0FjrXzek), LOWER(@value_llAcaYxkIU)) /* "title" contains "Climate Change" */ + ) + ) + ) + LIMIT 555 + RETURN p + +##### Query Execution +To execute the generated query, call `execute_aql_query()`: + + query_result = query_builder.execute_aql_query(aql_query, bind_vars) + +The query result is of type `arango.cursor.Cursor` (see [docs](https://python-driver-for-arangodb.readthedocs.io/_/downloads/en/dev/pdf/)) + + + diff --git a/cag/framework/analyzer/aql_queries.py b/cag/framework/analyzer/aql_queries.py new file mode 100644 index 0000000..d6294bf --- /dev/null +++ b/cag/framework/analyzer/aql_queries.py @@ -0,0 +1,41 @@ +### FLOW QUERIES ### +# Get start nodes without using views +GET_DOCUMENTS_FILTERS_USING_COLLECTION = ( + '\n' + + 'LET {query_var} = FLATTEN( ' + + '\n\tFOR {loop_var} IN {collection} ' + + '\t{filters} ' + + '\n\t{limit} ' + + '\n\tRETURN doc ' + + '\n)' +) + +# Get start nodes using views +GET_DOCUMENTS_FILTERS_USING_VIEW = ( + '\n' + + 'LET {query_var} = FLATTEN( ' + + '\n\tFOR {loop_var} IN {view} ' + + '\t{filters} ' + + '\n\t{limit} ' + + '\n\tRETURN doc ' + + '\n)' +) + +# Combine multiple start nodes queries +UNION_START_NODES = ( + '\n' + + 'LET {var} = UNION({lists}, []) ' +) + +# Perform graph traversal +GET_GRAPH = ( + '{start_nodes_aql_query} ' + + '\n\n/* For each start node, start finding a path */ ' + + '\nFOR start_node IN {start_nodes_var} ' + + '\n\t/* Each Edge has the corresponding direction specified to make querying faster */ ' + + '\n\tFOR v, e, p IN @min..@max {base_direction} start_node {edge_directions} {graph_stmt} ' + + '\n\tOPTIONS {{ vertexCollections: @vertex_collections, edgeCollections: @edge_collections }} ' + + '\n\t\t{path_filters} ' + + '\n\t{limit} ' + + '\n\tRETURN p' +) \ No newline at end of file diff --git a/cag/framework/analyzer/objects/Edge.py b/cag/framework/analyzer/objects/Edge.py new file mode 100644 index 0000000..bc3ed93 --- /dev/null +++ b/cag/framework/analyzer/objects/Edge.py @@ -0,0 +1,26 @@ +from objects.Node import Node + +class Edge: + def __init__(self, + id:str, + source:Node, + target:Node, + name:str, + conditions:list): + # Edge id + self.id:str = id + + # Source node (object) + self.source:Node = source + + # Target node (object) + self.target:Node = target + + # Edge name (i.e. the name of the collection that this edge is given in ArangoDB) + self.name:str = name + + # Edge filters. Each item is a separate condition + self.conditions:list = conditions + + # Edge direction (ingoing, outgoing) + self.direction:int = None \ No newline at end of file diff --git a/cag/framework/analyzer/objects/GraphFlow.py b/cag/framework/analyzer/objects/GraphFlow.py new file mode 100644 index 0000000..0f76331 --- /dev/null +++ b/cag/framework/analyzer/objects/GraphFlow.py @@ -0,0 +1,281 @@ +from objects.Node import Node +from objects.Edge import Edge +from collections import deque +from itertools import chain + +# Logging Setup +import sys +import logging +import colorlog +logger = logging.getLogger(__name__) +logger.setLevel(logging.INFO) +fmt = colorlog.ColoredFormatter( + "%(log_color)s%(levelname)s | %(asctime)s | %(message)s") +stdout = colorlog.StreamHandler(stream=sys.stdout) +stdout.setFormatter(fmt) +logger.addHandler(stdout) + + +class GraphFlow: + """ + A GraphFlow is the internal representation of a graph. It is used by the QueryBuilder to + generate a AQL query that retrieves the represented graph data. It contains all nodes and edes + and provides functions to work with them. + """ + + def __init__(self, nodes: list, edges: list, name: str = "Flow"): + self.name = name + self.nodes = list() + self.edges = list() + # Will be filled later on once the root node has been identified + self.depth_dict = dict() + + # Build internal representation of the QGV + self._build_from_json(nodes, edges) + + def _are_nodes_connected(self, node1: Node, node2: Node): + """ + Checks whether the two given collections are connected in the GraphFlow. + + Args: + node1 (Node): collection name 1 + node2 (Node): collection name 2 + + Returns: + bool: Whether node1 and node2 are connected in the GraphFlow. + """ + + return any(lambda edge: ( + (edge.source == node1 and edge.target == node2) or + (edge.source == node2 and edge.target == node1) + )) + + def get_vertex_collections(self): + """ + Gets a list of all vertex collection names in this GraphFlow. + + Returns: + list: List of collection names + """ + vertex_names = [node.collection for node in self.nodes] + return list(set(vertex_names)) + + def get_edge_collections(self): + """ + Gets a list of all edge collection names in this GraphFlow. + + Returns: + list: List of collection names + """ + edge_names = [edge.name for edge in self.edges] + return list(set(edge_names)) + + def update_traversal_directions(self, paths:list) -> list: + """ + Inheritly, edges of a GraphFlow have a direction from source to target. This is + specified in the Edge objects themselve (they have a "source" and "target" property). + + This is fine if the desired traversal direction is from from source nodes to target nodes, + i.e. from left to right. However, there might be scenarios where the desired traversal + direction is different, e.g. for performance reasons. In this case, the edge direction + must be adjusted to match the corresponding paths. + + A path is a sequence of (edge,node) pairs. The order of these pairs corresponds to the + traversal order of the AQL query. Hence, any (edge) should have its corresponding (node) + as the target. If that is not the case, the direction of (edge) is switched. + + Args: + paths (list): List of lists. Each sublist contains (edge,node) pairs. + + Returns: + list: The same list that was passed to this function, but with the adjusted edge directions. + """ + + for path in paths: + """ + A path contains tuples of (edge, node). 'edge' is the incoming edge pointing to 'node'. + Node is a target node of the edge. + If, however, the node is present at the source instead, the edge direction needs + to be switched. + """ + + # For each edge/node pair in the path + for edge, target_node in path: + + # First node of the path is a source node, i.e. no incoming edges + if not edge: + continue + + # If the edge direction does not correspond to the desired traversal direction, switch + if edge.source == target_node: + tmp = edge.target + edge.source = edge.target + edge.target = tmp + return paths + + + def _dfs(self, node, visited): + """ + Helper function for self.is_graph_connected() + """ + + # Mark the current node as visited + visited[node] = True + + # Recur for all adjacent nodes (neighbors) + for edge in self.edges: + if edge.source == node or edge.target == node: + neighbor = edge.target if edge.source == node else edge.source + if not visited[neighbor]: + self._dfs(neighbor, visited) + + def is_graph_connected(self) -> bool: + """ + Checks whether the graph has any unconnected subgraphs. Performs a dfs on the + graph starting with a random node. If not all nodes were visited during dfs, then the + flow is considered to contain unconnected subgraphs. + + Returns: + bool: Whether or not the graph is connected. + """ + + # Dictionary to keep track of visited nodes + visited = {node: False for node in self.nodes} + + # Perform DFS starting from any random node in the graph + start_node = self.nodes[0] # Get the first node in the list of nodes + self._dfs(start_node, visited) + + # If all nodes have been visited, the graph is connected + return all(visited.values()) + + def _build_from_json(self, nodes: list, edges: list) -> None: + """ + Builds the GraphFlow from nodes and edges given as json objects. + + Args: + nodes (list): List of nodes, each containing a node id ('id'), + collection name ('collection') and conditions/filters ('userData') + """ + + # Create the Node objects + for node in nodes: + node_obj = Node(id=node['id'], + collection=node['collection'], + conditions=node['userData'], + ) + self.nodes.append(node_obj) + + # Create the Edge objects + for edge in edges: + source_id = edge['source'] + target_id = edge['target'] + source_node = next( + (node for node in self.nodes if node.id == source_id), None) + target_node = next( + (node for node in self.nodes if node.id == target_id), None) + edge = Edge(id=edge['id'], + source=source_node, + target=target_node, + name=edge['name'], + conditions=edge['userData']) + self.edges.append(edge) + + def find_edges_by_node(self, node) -> list[Edge]: + """ + Finds all edges outgoing from the given 'node' (i.e. all edges where 'node' is the source) + + Args: + node (Node): Node to find the edges for + + Returns: + list: List of neighboring edges. + """ + + node_edges = list() + for edge in self.edges: + if edge.source == node: + node_edges.append(edge) + return node_edges + + def print_flow(self): + """ + Pretty prints the current GraphFlow. + """ + + visited_edges = set() + + for node in self.nodes: + neighbors = [] + for edge in self.edges: + if edge.source == node and edge not in visited_edges: + neighbors.append((edge, edge.target)) + visited_edges.add(edge) + if neighbors: + for neighbor_edge, neighbor_node in neighbors: + print( + f"{node.collection} (ID: {node.id}) - [{neighbor_edge.id}] - {neighbor_node.collection} (ID: {neighbor_node.id})") + + def find_source_nodes(self) -> list[Node]: + """ + Finds and returns all source nodes in the flow. + A source node is a node that has no incoming connections. + + Returns: + list: List of source nodes + """ + + # Create a set of all target nodes in edges + target_nodes = set(edge.target for edge in self.edges) + + # Filter nodes that are not in the set of target nodes + nodes_without_incoming_edges = [node for node in self.nodes if node not in target_nodes] + + return nodes_without_incoming_edges + + def find_sink_nodes(self) -> list[Node]: + """ + Finds and returns the sink nodes in the flow. + A sink node is a node that has no outgoing connections. + + Returns: + list: List of sink nodes + """ + + # Create a set of all source nodes in edges + source_nodes = set(edge.source for edge in self.edges) + + # Filter nodes that are not in the set of source nodes + nodes_without_outgoing_edges = [node for node in self.nodes if node not in source_nodes] + + return nodes_without_outgoing_edges + + def find_source_to_sink_paths(self, source_nodes, sink_nodes, path=[], edge=None): + """ + Finds all source-to-sink paths in the GraphFlow. + A single source-to-sink path is a sequence of edges and nodes leading from a single + source node to a single sink node. + The same source and sink nodes can be part of many source-to-sink paths. + + Args: + source_nodes (list): List of source nodes + sink_nodes (list): List of sink nodes + path (list): Current source-to-sink path at some recursion depth. + Initially an empty list as this is a recursive function. + edge (Edge): Current edge to traverse at some recursion depth. + Initially None as this is a recursive function. + """ + + if not path: + path = [] + + paths = [] + for edge, node in source_nodes: + new_path = path + [(edge, node)] + if node in sink_nodes: + paths.append(new_path) + neighbors = [(edge, edge.target) for edge in self.edges if edge.source == node] + paths.extend(self.find_source_to_sink_paths(neighbors, sink_nodes, new_path, edge)) + + return paths + diff --git a/cag/framework/analyzer/objects/Node.py b/cag/framework/analyzer/objects/Node.py new file mode 100644 index 0000000..cf74dd8 --- /dev/null +++ b/cag/framework/analyzer/objects/Node.py @@ -0,0 +1,15 @@ +class Node: + + def __init__(self, + id:str, + collection:str, + conditions:list): + # Node id + self.id:str = id + + # Node collection + self.collection:str = collection + + # Node filters + self.conditions:list = conditions + \ No newline at end of file diff --git a/cag/framework/analyzer/objects/__init__.py b/cag/framework/analyzer/objects/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/cag/framework/analyzer/operator_enum.py b/cag/framework/analyzer/operator_enum.py new file mode 100644 index 0000000..50e92ba --- /dev/null +++ b/cag/framework/analyzer/operator_enum.py @@ -0,0 +1,19 @@ +from enum import Enum +class OperatorEnum(str, Enum): + CONTAINS = 'contains' + CONTAINS_NOT = 'contains_not' + EQUALS = 'equals' + EQUALS_NOT = 'equals_not' + ALPHABETIC_CONTAINS = 'alphabetic_contains' + ALPHABETIC_CONTAINS_NOT = 'alphabetic_contains_not' + ALPHABETIC_STARTS_WITH = 'alphabetic_starts_with' + ALPHABETIC_ENDS_WITH = 'alphabetic_ends_with' + NUMERIC_EQUALS = 'numeric_equals' + NUMERIC_SMALLER_THAN = 'numeric_smaller_than' + NUMERIC_SMALLER_OR_EQUAL = 'numeric_smaller_or_equal' + NUMERIC_LARGER_THAN = 'numeric_larger_than' + NUMERIC_LARGER_OR_EQUAL = 'numeric_larger_or_equal' + DATE_SMALLER_THAN = 'date_smaller_than' + DATE_SMALLER_OR_EQUAL = 'date_smaller_or_equal' + DATE_LARGER_THAN = 'date_larger_than' + DATE_LARGER_OR_EQUAL = 'date_larger_or_equal' \ No newline at end of file diff --git a/cag/framework/analyzer/query_builder.py b/cag/framework/analyzer/query_builder.py new file mode 100644 index 0000000..dbcfb68 --- /dev/null +++ b/cag/framework/analyzer/query_builder.py @@ -0,0 +1,873 @@ +import os +import math +from cag.utils.config import Config +from cag.utils import utils +from cag.framework.component import Component +from cag import logger +from dataclasses import dataclass +from operator_enum import OperatorEnum +from objects.GraphFlow import GraphFlow +from aql_queries import ( + UNION_START_NODES, + GET_DOCUMENTS_FILTERS_USING_COLLECTION, + GET_DOCUMENTS_FILTERS_USING_VIEW, + GET_GRAPH, +) + +DB_LABEL_ATTRIBUTE = "DB_LABEL_ATTRIBUTE" +SYSTEM_PROPS = ["_key", "_id", "_rev", "_from", "_to"] +FROM_VERTEX_COLLECTIONS = "from_vertex_collections" +TO_VERTEX_COLLECTIONS = "to_vertex_collections" +COLLECTION = "collection" +ATTRIBUTE = "attribute" +ATTRIBUTE_TYPE = "attributeType" +OPERATOR = "operator" +VALUE = "value" +LOOP_VAR = "doc" +P = "p" +START_NODES_VAR = "start_nodes" +VERTEX_COLLECTIONS = "vertex_collections" +EDGE_COLLECTIONS = "edge_collections" +MIN = "min" +MAX = "max" +BASE_DIRECTION = "base_direction" +INBOUND = "INBOUND" +OUTBOUND = "OUTBOUND" +ANY = "ANY" +NUMBER_OF_START_NODES = 1000 + +@dataclass +class UserData: + attribute: str + attributeType: str + operator: OperatorEnum + value: str + +@dataclass +class NodeDTO: + id: str + collection: str + userData: list[UserData] + +@dataclass +class EdgeDTO: + id: str + source: str + target: str + name: str + userData: list[UserData] + +@dataclass +class GraphData: + nodes: list[NodeDTO] + edges: list[EdgeDTO] + + +# TODO Put this into utils.py +def generate_random_string(length:int) -> str: + import string + import random + letters = string.ascii_letters + string.digits + result_str = ''.join(random.choice(letters) for _ in range(length)) + return result_str + + +class QueryBuilder(Component): + + def __init__(self, config: Config) -> None: + + super().__init__(config) + + print("Works: ", self.database) + # print("Works not: ", self.test) + + self.edge_definitions = self.arango_db.graph(config.graph).edge_definitions() + self.vertex_collections = self.arango_db.graph(config.graph).vertex_collections() + + # self.flow will eventually contain the graph that is to be queried + self.flow:GraphFlow = None + + def _map_operator(self, operator: str): + """ + Maps certain operator names to the internal representation. + + Args: + operator (str): Operator name + + Returns: + str: The operators' internal representation + """ + + mapping = { + 'equals': 'equals', + 'equals_not': 'equalsNot', + 'alphabetic_contains': 'contains', + 'alphabetic_contains_not': 'containsNot', + 'alphabetic_starts_with': 'startsWith', + 'alphabetic_ends_with': 'endsWith', + 'numeric_equals': '=', + 'numeric_smaller_than': '<', + 'numeric_smaller_or_equal': '<=', + 'numeric_larger_than': '>', + 'numeric_larger_or_equal': '>=', + 'date_smaller_than': 'before', + 'date_smaller_or_equal': 'onOrBefore', + 'date_larger_than': 'after', + 'date_larger_or_equal': 'onOrAfter', + } + return mapping[operator] + + def _build_aql_condition(self, + field: str, + operator: str, + value: str, + datatype: str, + loop_var: str, + bind_vars: dict, + prepend_filter_clause=False, + uses_view=False + ): + """ + Builds the >>conditional<< part of an AQL 'FILTER' statement. + E.g.: 'CONTAINS(a.name, "bob")' + Not: 'FILTER CONTAINS(a.name, "bob")' + + Args: + field (str): The field to use (e.g. 'name' in 'a.name == "Bob") + operator (str): The internal name of the operator to apply (e.g. 'contains' for 'CONTAINS(a.name, "bob"))' + value (str): The value to use + datatype (str): The datatype of the value + loop_var (str): The name of the current variable for the loop (e.g. 'doc' in 'FOR doc IN documents FILTER doc.name == "Bob"') + bind_vars (dict): Bind parameters for AQL query + prepend_filter_clause (bool): Whether or not to prepend a FILTER (or SEARCH) clause + uses_view (bool): Whether or not to apply a view (uses different operator names) + + Returns: + str: The constructed conditional statement + """ + + if not value or not datatype: + filter_statement = "true" + else: + # Prepare a randomly named bind parameter. Random in order to avoid name collisions when this function is called multiple times for the same query + bind_field = f"field_{generate_random_string(10)}" + bind_value = f"value_{generate_random_string(10)}" + + # Case: Text + if datatype == "text": + if uses_view: + operator_map = { + 'contains': f'PHRASE({loop_var}.@{bind_field}, @{bind_value}, "text_en") /* "{field}" contains "{value}" */', + 'containsNot': f'{loop_var}.@{bind_field} NOT IN TOKENS(@{bind_value}) /* "{field}" does not "{value}" */', + 'equals': f'{loop_var}.@{bind_field} == @{bind_value} /* "{field}" equals "{value}" */', + 'equalsNot': f'{loop_var}.@{bind_field} != @{bind_value} /* "{field}" does not equal "{value}" */', + 'startsWith': f'STARTS_WITH({loop_var}.@{bind_field}, @{bind_value}) /* "{field}" starts with "{value}" */', + # 'endsWith': f'STARTS_WITH(REVERSE({loop_var}.@{bind_field}), REVERSE(@{bind_value}))' + } + else: + operator_map = { + 'contains': f'CONTAINS(LOWER({loop_var}.@{bind_field}), LOWER(@{bind_value})) /* "{field}" contains "{value}" */', + 'containsNot': f'NOT CONTAINS(LOWER({loop_var}.@{bind_field}), LOWER(@{bind_value})) /* "{field}" does not "{value}" */', + 'equals': f'LOWER({loop_var}.@{bind_field}) == LOWER(@{bind_value}) /* "{field}" equals "{value}" */', + 'equalsNot': f'LOWER({loop_var}.@{bind_field}) != LOWER(@{bind_value}) /* "{field}" does not equal "{value}" */', + 'startsWith': f'STARTS_WITH({loop_var}.@{bind_field}, @{bind_value}) /* "{field}" starts with "{value}" */', + # 'endsWith': f'STARTS_WITH(REVERSE({loop_var}.@{bind_field}), REVERSE(@{bind_value}))' + } + + # Case: Number + elif datatype == "number": + if uses_view: + operator_map = { + '=': f'{loop_var}.@{bind_field} == @{bind_value} /* "{field}" equals "{value}" */', + '!=': f'{loop_var}.@{bind_field} != @{bind_value} /* "{field}" does not equal "{value}" */', + '<': f'{loop_var}.@{bind_field} < @{bind_value} /* "{field}" smaller than "{value}" */', + '>': f'{loop_var}.@{bind_field} > @{bind_value} /* "{field}" larger than "{value}" */', + '<=': f'{loop_var}.@{bind_field} <= @{bind_value} /* "{field}" smaller or equal "{value}" */', + '>=': f'{loop_var}.@{bind_field} >= @{bind_value} /* "{field}" larger or equal "{value}" */', + } + else: + operator_map = { + '=': f'{loop_var}.@{bind_field} == @{bind_value} /* "{field}" equals "{value}" */', + '!=': f'{loop_var}.@{bind_field} != @{bind_value} /* "{field}" does not equal "{value}" */', + '<': f'{loop_var}.@{bind_field} < @{bind_value} /* "{field}" smaller than "{value}" */', + '>': f'{loop_var}.@{bind_field} > @{bind_value} /* "{field}" larger "{value}" */', + '<=': f'{loop_var}.@{bind_field} <= @{bind_value} /* "{field}" smaller or equal "{value}" */', + '>=': f'{loop_var}.@{bind_field} >= @{bind_value} /* "{field}" larger or equal "{value}" */', + } + + # Case: Date + elif datatype in ["date", "datetime"]: + operator_map = { + 'equals': f'{loop_var}.@{bind_field} == DATE_ISO8601(@{bind_value}) /* "{field}" equals "{value}" */', + 'is': f'{loop_var}.@{bind_field} == DATE_ISO8601(@{bind_value}) /* "{field}" equals "{value}" */', + 'isNot': f'{loop_var}.@{bind_field} != DATE_ISO8601(@{bind_value}) /* "{field}" does not equal "{value}" */', + 'after': f'{loop_var}.@{bind_field} > DATE_ISO8601(@{bind_value}) /* "{field}" after "{value}" */', + 'before': f'{loop_var}.@{bind_field} < DATE_ISO8601(@{bind_value}) /* "{field}" before "{value}" */', + 'onOrAfter': f'{loop_var}.@{bind_field} >= DATE_ISO8601(@{bind_value}) /* "{field}" on or after "{value}" */', + 'onOrBefore': f'{loop_var}.@{bind_field} <= DATE_ISO8601(@{bind_value}) /* "{field}" on or before "{value}" */', + } + + # Add bind variables for the query (the field names and their value) + bind_vars[bind_field] = field + bind_vars[bind_value] = value + + # Sometimes, due to the frontend, the same operator moght have different names. Normalize the names here. + if operator not in operator_map: + operator = self._map_operator(operator) + filter_statement = operator_map[operator] + + # If necessary, prepend a "SEARCH" or "FILTER" clause to the statement + if prepend_filter_clause: + if uses_view: + filter_statement = f'SEARCH {filter_statement}' + else: + filter_statement = f'FILTER {filter_statement}' + return filter_statement, bind_vars + + def _validate_graph_data(self, graph_data:GraphData) -> None: + """ + Ensures that the provided graph data has the correct format. + Only performs a shallow check: + 1.) checks whether 'nodes' and 'edges' are defined + 2.) checks whether 'nodes' and 'edges' are of type 'list' + 3.) checks whether 'nodes' is not empty + + 4.) checks whether all nodes have the required properties + 5.) checks datatypes of top-level attributes of each node + 6.) checks whether all node collections are actually contained in the database + 7.) checks whether userData of nodes contains the necessary attributes + + 8.) checks whether all edges have the required properties + 9.) checks datatypes of top-level attributes of each edge + 10.) checks whether all edge collections are actually contained in the database + 11.) checks whether userData of edges contains the necessary attributes + + Args: + graph_data (GraphData): The graph data to validate + + Raises: + AssertionError: If graph_data is of an invalid format + """ + + # 1.) + assert 'nodes' in graph_data, "Graph data does not contain a node list labeled `nodes`." + assert 'edges' in graph_data, "Graph data does not contain an edge list labeled `edges`." + + # 2.) + assert isinstance(graph_data.get('nodes'), list), "Node list in graph data is not of type list." + assert isinstance(graph_data.get('edges'), list), "Edge list in graph data is not of type list." + + # 3.) + assert graph_data.get('nodes'), "Node list in graph data is empty." + + for node in graph_data.get('nodes'): + # 4.) & 5.) + assert 'id' in node, "At least one node in 'nodes' of graph_data does not contain an 'id' property." + assert isinstance(node.get('id'), str), f'"id" of node with id "{node.get("id")}" must be a string.' + assert 'collection' in node, "At least one node in 'nodes' of graph_data does not contain a 'collection' property." + assert isinstance(node.get('collection'), str), f'"collection" of node with id "{node.get("id")}" must be a string.' + assert 'userData' in node, "At least one node in 'nodes' of graph_data does not contain a 'userData' property." + assert isinstance(node.get('userData'), list), f'"userData" of node with id "{node.get("id")}" must be a list.' + + # 6.) + assert node.get('collection') in self.vertex_collections, f'Node with id "{node.get("id")}" has an invalid collection name: "{node.get("collection")}"' + + # 7.) + for ud in node.get('userData'): + assert 'attribute' in ud, f'An element within "userData" of node with id "{node.get("id")}" is missing a property "attribute"' + assert 'attributeType' in ud, f'An element within "userData" of node with id "{node.get("id")}" is missing a property "attributeType"' + assert 'operator' in ud, f'An element within "userData" of node with id "{node.get("id")}" is missing a property "text"' + assert 'value' in ud, f'An element within "userData" of node with id "{node.get("id")}" is missing a property "value"' + + for edge in graph_data.get('edges'): + # 8.) & 9.) + assert 'id' in edge, "At least one edge in 'edges' of graph_data does not contain an 'id' property." + assert isinstance(edge.get('id'), str), f'"id" of edge with id "{edge.get("id")}" must be a string.' + assert 'name' in edge, "At least one edge in 'edges' of graph_data does not contain a 'name' property." + assert isinstance(edge.get('name'), str), f'"name" of edge with id "{edge.get("id")}" must be a string.' + assert 'source' in edge, "At least one edge in 'edges' of graph_data does not contain a 'source' property." + assert isinstance(edge.get('source'), str), f'"source" of edge with id "{edge.get("id")}" must be a string.' + assert 'target' in edge, "At least one edge in 'edges' of graph_data does not contain a 'target' property." + assert isinstance(edge.get('target'), str), f'"target" of edge with id "{edge.get("id")}" must be a string.' + assert 'userData' in edge, "At least one edge in 'edges' of graph_data does not contain a 'userData' property." + assert isinstance(edge.get('userData'), list), f'"userData" of edge with id "{edge.get("id")}" must be a list.' + + # 10.) + assert any(coll_def.get('edge_collection') == edge.get('name') for coll_def in self.edge_definitions), f'Edge with id "{edge.get("id")}" has an invalid collection name: "{edge.get("name")}"' + + # 11.) + for ud in edge.get('userData'): + assert 'attribute' in ud, f'An element within "userData" of edge with id "{edge.get("id")}" is missing a property "attribute"' + assert 'attributeType' in ud, f'An element within "userData" of edge with id "{edge.get("id")}" is missing a property "attributeType"' + assert 'operator' in ud, f'An element within "userData" of edge with id "{edge.get("id")}" is missing a property "text"' + assert 'value' in ud, f'An element within "userData" of edge with id "{edge.get("id")}" is missing a property "value"' + + + def _has_view(self, collection_name) -> bool: + # TODO + return False + + def _get_view(self, collection_name) -> bool: + # TOOD + return None + + def _build_node_filter(self, index: str, nodes: list, bind_vars: dict, p:str) -> tuple[list, dict]: + """ + This function generates AQL conditional statements for each node passed to the function. + A node can have multiple conditions, leading to multiple conditional statements. + A conditional statement could, for example, look like this: + 'p.vertices[1].age > 10' + Note that this function does not include AQL statements like "FILTER" or "SEARCH". + + Arguments: + index (list): Index refers to the index of the node in the path, for which the conditional state should be generated. + nodes (list): List of nodes for which conditional statements should be generated. + bind_vars (dict): Bind parameters for the AQL query + p (str): The variable used to reference a "path" in the AQL query (e.g. as in "p.vertices"). Typically the character 'p' + + Returns: + (list, dict): The conditional statements for the nodes and the updated bind parameter dictionary. + """ + + # Create the conditions for each node + node_filters = list() + loop_var = "{p}.vertices[{index}]".format(p=p, index=index) + for node in nodes: + # Create condition statement to match the nodes' collection (e.g. IS_SAME_COLLECTION(p.vertices[1], "TextNode")) + bind_var_name = generate_random_string(10) + bind_vars[bind_var_name] = node.collection + cond_collection = f'(IS_SAME_COLLECTION({loop_var}, @{bind_var_name})) /* Vertex at index {index} is of "{bind_vars[bind_var_name]}" collection */ ' + node_filters.append(cond_collection) + + # Create condition statement for each nodes property/condition + for condition in node.conditions: + attribute = condition[ATTRIBUTE] + attributeType = condition[ATTRIBUTE_TYPE] + #operator = condition[OPERATOR][VALUE] + operator = condition[OPERATOR] + value = condition[VALUE] + + # 2. Create condition for property (e.g. p.vertices[index].name == "Peter") + cond_property, bind_vars = self._build_aql_condition( + field=attribute, + operator=operator, + value=value, + datatype=attributeType, + loop_var=loop_var, + bind_vars=bind_vars + ) + + # Add brackets around the conditional statement + cond_property = f"({cond_property})" + node_filters.append(cond_property) + return node_filters, bind_vars + + def _build_edge_filter(self, index: str, edges: list, bind_vars: dict, p:str) -> tuple[list, dict]: + """ + This function generates AQL conditional statements for each edge passed to the function. + An edge can have multiple conditions, leading to multiple conditional statements. + A conditional statement could, for example, look like this: + 'p.edge[0].size < 100' + Note that this function does not include AQL statements like "FILTER" or "SEARCH". + + Arguments: + - index: list + Index refers to the index of the edge in the path, for which the conditional state should be generated. + - edges: list + List of edges for which conditional statements should be generated. + - bind_vars: dict + Bind parameters for the AQL query + - p: str + The variable used to reference a "path" in the AQL query (e.g. as in "p.vertices"). Typically the character 'p' + """ + + # Create conditions for each edge + edge_filters = list() + loop_var = "{p}.edges[{index}]".format(p=p, index=index-1) + for edge in edges: + if not edge.conditions: + continue + + # Create conditional statement for each property/condition of the edge + for condition in edge.conditions: + value = condition[VALUE] + if not value: + continue + + # Create EdgeProperty instance for easier data handling + attribute = condition[ATTRIBUTE] + attribute_type = condition[ATTRIBUTE_TYPE] + # operator = condition[OPERATOR][VALUE] + operator = condition[OPERATOR] + + # Create condition for property (e.g. p.edges[0]._key == 50) + cond_property, bind_vars = self._build_aql_condition(field=attribute, + operator=operator, + value=value, + datatype=attribute_type, + loop_var=loop_var, + bind_vars=bind_vars) + edge_filter = f"({cond_property})" + edge_filters.append(edge_filter) + return edge_filters, bind_vars + + def _build_aql_path_filter(self, path:list, bind_vars:dict) -> tuple[str, dict]: + """ + This function creates a conditional statement for an AQL query, where each statement + filters a complete path. `path` is a list of tuples, where the first item of each tuple is an Edge + and the second item in each tuple is a Node: [(edge, node), (edge, node), ...] + + E.g.: a single conditional statement for a full path could look like this: + ' + ( + IS_SAME_COLLECTION(p.vertices[0], "Document") + AND + p.vertices[1].name == "Bob + ) + ' + """ + + filters = list() + filter_statement = '' + # 1.: Iterate each element (i.e. each edge-node pair) in the path + for index, (edge, node) in enumerate(path): + # 2.: Create all conditional clauses for the edge and store them in a list + if edge: + edge_filters, bind_vars = self._build_edge_filter( + index=index, + edges=[edge], + bind_vars=bind_vars, + p=P + ) + filters.extend(edge_filters) + + # 3.: Create all conditional clauses for the node and store them in the same list + node_filters, bind_vars = self._build_node_filter( + index=index, + nodes=[node], + bind_vars=bind_vars, + p=P + ) + filters.extend(node_filters) + + # 4.: Combine all conditional statements and combine them in a string using AND + joined_filters = ' AND '.join(filters) + + # 5.: Surround statement by round brackets + filter_statement = f'({joined_filters})' + return filter_statement, bind_vars + + def _build_query_start_nodes(self, + source_nodes:list, + max_start_nodes:int, + bind_vars:dict) -> tuple[str, dict]: + """ + This function generates parts of an AQL query that is used to obtain all source nodes from + the database. + A sample could look like this: + ' + LET q1 = FOR doc IN Documents RETURN doc + LET start_nodes = UNION(q1, []) + ' + The query part is not executable by itself as it is meant to be used as part of a + larger AQL query later on. + + Args: + source_nodes (list): List of source nodes. All of them must be obtained through the AQL query. + max_start_nodes (int): Maximum number of total start nodes to obtain. Sets a corresponding LIMIT in the AQL clause. + bind_vars (dict): Running bind parameters for the AQL query. + + Returns: + (str, dict): AQL query and running bind parameters + """ + + # This will hold the final query for the start nodes + start_node_query = '' + + # This will hold the names for each sub-query (e.g. "q1" in "LET q1 = FOR doc IN Documents ...") + query_identifiers = list() + + # Based on the total number of documents to obtain (`max_start_nodes`), calculate how many docs should be drawn from each distinct collection + source_nodes_count = len(source_nodes) + docs_per_collection = math.floor(max_start_nodes/source_nodes_count) + + # For each source node (i.e. each collection), create a sub-query + for i, source_node in enumerate(source_nodes): + filters = list() # List of filters will contain all conditions for the current node + query_id = f'{LOOP_VAR}_{i}' # Variable to identify each sub query of the AQL + collection = source_node.collection + has_view = self._has_view(collection) + view_name = self._get_view(collection) + + # Iterate all node conditions in order to create the according node filters ("FILTER" statements) + for condition in source_node.conditions: + filter_aql, bind_vars = self._build_aql_condition( + field=condition[ATTRIBUTE], + operator=condition[OPERATOR], + value=condition[VALUE], + datatype=condition[ATTRIBUTE_TYPE], + loop_var=LOOP_VAR, + bind_vars=bind_vars, + prepend_filter_clause=(not has_view), + uses_view=has_view + ) + filters.append(filter_aql) + + # If a view exists for the collection type, then use views to query the start nodes + if has_view: + filters = 'SEARCH ' + '\nAND\n '.join(filters) if filters else '' + aql_start_nodes = GET_DOCUMENTS_FILTERS_USING_VIEW.format( + query_var=query_id, + loop_var=LOOP_VAR, + view=view_name, + filters=filters, + limit=f'LIMIT {max_start_nodes}' if max_start_nodes and max_start_nodes > 0 else f'LIMIT {docs_per_collection}' + ) + + # If no view exists for the collection type, then iterate the collection normally without using views + else: + filters = ' '.join(filters) + aql_start_nodes = GET_DOCUMENTS_FILTERS_USING_COLLECTION.format( + query_var=query_id, + loop_var=LOOP_VAR, + collection=collection, + filters=filters, + limit=f'LIMIT {max_start_nodes}' if max_start_nodes and max_start_nodes > 0 else f'LIMIT {docs_per_collection}' + ) + + # Append current query to the query that gets all start nodes + start_node_query = start_node_query + ' \n' + aql_start_nodes + + # Save the loop var for later + query_identifiers.append(query_id) + + + # Create merged query. If start nodes come from multiple collections, they are obtain in a separate query each (above) and put in a list. + # Below code now creates the AQL query to place all documents into a single list. + # E.g.: + # Above code produces: + # 'LET q1 = FOR d IN Person RETURN p + # LET q2 = FOR b IN Building RETURN b' + # + # Then below code adds: + # 'LET start_nodes = UNION(q1, q2, [])' + # + # The empty bracket is placed in case there is only one q1 as in that case, UNION would fail due to insufficient number of arguments. + aql_union_start_nodes = UNION_START_NODES.format( + var=START_NODES_VAR, + lists=', '.join(query_identifiers) + ) + + start_node_query = start_node_query + ' \n' + aql_union_start_nodes + + # Return result + return start_node_query, bind_vars + + def _edge_direction(self, collection_a: str, collection_b: str, use_graph_definition: bool = False): + """ + Checks the direction of the edge between the two collections in the graph definition. + If an edge exists between the two given collections, this function returns its + direction. If `use_graph_definition` is True, the direction is checked based of the + actual graph definition rather than the manually provided and custom meta edges. + Returns: + -1, if collection_a is the target node and collection_b is the source node (i.e. inbound edge) + 0, if the edge does not exists between the two given nodes (i.e. invalid edge) + 1, if collection_a is the source node and collection_b is the target node (i.e. outbound edge) + """ + + # coll_a = self.transform(collection_a) + coll_a = collection_a + # coll_b = self.transform(collection_b) + coll_b = collection_b + + # Case: Using graph edge definitions + if use_graph_definition: + for edge_definition in self.edges: + source_colls = edge_definition[FROM_VERTEX_COLLECTIONS] + target_colls = edge_definition[TO_VERTEX_COLLECTIONS] + + # Outbound a -> b + if (coll_a in source_colls and coll_b in target_colls): + return 1 + + # Inbound a <- b + if (coll_a in target_colls and coll_b in source_colls): + return -1 + + # Case: Using manually provided, custom meta edges + # TODO load edges/meta edges from database + #if coll_a in self.meta_edges: + # # Outbound a -> b + # if coll_b in self.meta_edges[coll_a]: + # return 1 + # + #if coll_b in self.meta_edges: + # # Inbound a <- b + # if coll_a in self.meta_edges[coll_b]: + # return -1 + # + return 0 + + def _compose_mixed_edge_directions_statement(self, edges: list) -> str: + """ + Composes the part of an AQL Graph Traversal statement that specifies the direction for individual edges. + In ArangoDB, edges are directed. In the GraphFlow however, the traversal direction might be different + to that of the edge sin the database. For example, if the database contains "Person" - [likes] -> "Food", + but the traversal direction was specified to be "Food" - [likes] - "Person", then the edge "likes" will have + to be traversed in the opposite direction (INBOUND). + #traversing-in-mixed-directions + See: https://docs.arangodb.com/3.11/aql/graphs/traversals/#traversing-in-mixed-directions + + Approach: + 1. Group edges by their name: All edges of the same type will eventually be assigned with the + same direction. + 2. For each edge type, identify the required edge direction to use. If the edge type has to be + traversed only from source to target, apply "OUTBOUND". Else, apply "INBOUND" or "ANY" respectively. + """ + + label_dict = {} + + # Group edges by their name + for edge in edges: + name = edge.name + direction = edge.direction + + if name not in label_dict: + label_dict[name] = [direction] + else: + directions = label_dict[name] + directions.append(direction) + label_dict[name] = directions + + # Identify which name has multiple directions + edge_directions = {} + for edge_name, directions in label_dict.items(): + unique_directions = list(set(directions)) + if not unique_directions: + continue + elif len(unique_directions) > 1: + edge_directions[edge_name] = ANY + elif unique_directions[0] == -1: + edge_directions[edge_name] = INBOUND + else: + edge_directions[edge_name] = OUTBOUND + + parts = list() + for edge_name, direction in edge_directions.items(): + part = f'{direction} {edge_name}' + parts.append(part) + stmt = ', '.join(parts) + return stmt + + + def _build_query_graph_traversal(self, + s2s_paths:list, + bind_vars:dict + ) -> tuple[str, str, dict]: + + """ + Builds the AQL part that executes a graph traversal based on the provides source-to-sink paths (s2s_paths). + """ + + # For each path, create a seperate condition (e.g. '(p.vertices[0].name == "Peter")') + filter_statements = list() + for path in s2s_paths: + filter_statement, bind_vars = self._build_aql_path_filter( + path, + bind_vars + ) + filter_statements.append(filter_statement) + + # Step 3: Combine queries + statements = '\nOR\n'.join(filter_statements) + aql_filter_statement = f"FILTER ({statements})" + + # Step 4: Add the edge direction part of the graph traversal query + s2s_paths = self.flow.update_traversal_directions(s2s_paths) + for edge in self.flow.edges: + dir = self._edge_direction( + collection_a=edge.source.collection, + collection_b=edge.target.collection) + edge.direction = dir # -1: inbound, 1: outbound, =: undirected + dir_stmt = self._compose_mixed_edge_directions_statement( + self.flow.edges) + + return aql_filter_statement, dir_stmt, bind_vars + + + def generate_aql_graph_query(self, graph_data:GraphData, max_start_nodes:int = 10, max_paths:int = 10) -> tuple[str, dict]: + """ + This function generates an AQL query that can be used to query the given graph data. + + Arguments: + - graph_data:dict + Dictionary containing two lists (`nodes` and `edges`) denoting the graph_template to be queried. + - max_start_nodes:int + Maximum number of nodes to start graph traversals from. Can lead to missing paths. + This will apply a LIMIT clause in the AQL query. To exclude this clause, set to -1. + - max_paths:int + Maximum number of paths to traverse before returning the result. Can halt graph traversal prematurely. + This will apply a LIMIT clause in the AQL query. To exclude this clause, set to -1. + + Returns: + - aql_query:str + A corresponding ArangoDB query (AQL query) with which the provided graph_data can be queried on the database. + """ + + print("Preprocessing graph data ...") + # Ensure valid format of graph_data + try: + self._validate_graph_data(graph_data) + except Exception as e: + logger.error( + f"Validation of graph data failed - Please ensure the correct format. " + f"Message: {str(e)}") + return None + + # Create GraphFlow object. Will handle operations and calculations on the flow + nodes = graph_data.get('nodes') + edges = graph_data.get('edges') + self.flow = GraphFlow(nodes, edges) + + # (debug) + self.flow.print_flow() + + ###### QUERY BUILDING START ###### + + # 1. Obtain all source nodes (can be from multiple collections) + source_nodes = self.flow.find_source_nodes() + sink_nodes = self.flow.find_sink_nodes() + + # 2. Build first query part to obtain all "start documents" (i.e. all docs from which to start graph traversals) + bind_vars = dict() # Will contain the parameters for the query + + start_node_query, bind_vars = self._build_query_start_nodes( + source_nodes, + max_start_nodes, + bind_vars + ) + + # 3. Find all paths from start nodes to sink nodes + source_nodes_edges = [(None, node) for node in source_nodes] + s2s_paths = self.flow.find_source_to_sink_paths( + source_nodes_edges, sink_nodes) + + # 4. Build second query part to perform the graph traversal + aql_filter_statement, dir_stmt, bind_vars = self._build_query_graph_traversal( + s2s_paths, + bind_vars + ) + + # 5. Combine the query to obtain start nodes & to obtain the graph traversal paths + min_depth = 0 + max_depth = len(max(s2s_paths, key=len))-1 + vertex_collections = self.flow.get_vertex_collections() + #vertex_collections = [self.transform(vertex_name) for vertex_name in vertex_collections] + edge_collections = self.flow.get_edge_collections() + # allowed vertex collections to traverse + bind_vars[VERTEX_COLLECTIONS] = vertex_collections + # allowed edge collections to traverse + bind_vars[EDGE_COLLECTIONS] = edge_collections + # minimum traversal depth + bind_vars[MIN] = min_depth + # maximum traversal depth (= longest path) + bind_vars[MAX] = max_depth + aql_query = GET_GRAPH.format( + start_nodes_aql_query=start_node_query, + start_nodes_var=START_NODES_VAR, + base_direction=ANY, + edge_directions=dir_stmt, + path_filters=aql_filter_statement, + graph_stmt=f"GRAPH '{self.graph_name}'" if not dir_stmt else "", + limit=f'LIMIT {max_paths}' if max_paths and max_paths > 0 else '' + ) + + ###### QUERY BUILDING END ###### + + # 6. Return query + return aql_query, bind_vars + + def execute_aql_query(self, aql_query:str, bind_vars:dict) -> dict: + try: + cursor = self.arango_db.aql.execute( + aql_query, + bind_vars=bind_vars, + cache=False + ) + except Exception as e: + logger.info( + f"Error executinog the AQL query: exception of type {str(type(e))} was thrown. " + f"Message: {str(e)}" + ) + raise e + + # return cursor + return cursor + + +### Sample Usage: + +# Load database config from json file +import json +path_to_config = 'C:/Users/opit_do/Desktop/config.json' +with open(path_to_config, "r") as f: + config = json.load(f) +my_config = Config( + url=f'{config["DB_HOST"]}:{config["DB_PORT"]}', + user=config["DB_USER"], + password=config["DB_PASSWORD"], + database=config["DB_NAME"], + graph=config["DB_GRAPH"], +) + +sample_node_1 = { + "id":"0", + "collection":"Corpus", + "userData":[ + { + "attribute":"name", + "attributeType":"text", + "operator": "alphabetic_contains", + "value":"Wikipedia", + } + ] +} + +sample_node_2 = { + "id":"1", + "collection":"WikiArticle", + "userData":[ + { + "attribute":"name", + "attributeType":"text", + "operator": "alphabetic_contains", + "value":"Climate Change", + } + ] +} + +sample_edge = { + "id":"reactflow__edge-0-1", + "source":"0", + "target":"1", + "name":"BelongsTo", + "userData": [ + { + "attribute":"timestamp", + "attributeType":"datetime", + "operator": "date_smaller_than", + "value":"2023-11-24T23:00:00.000Z", + } + ] +} +graph_data = {'nodes': [sample_node_1, sample_node_2], 'edges': [sample_edge]} + +query_builder = QueryBuilder(my_config) +aql_query, bind_vars = query_builder.generate_aql_graph_query(graph_data) +print("Graph Traversal Query: ", aql_query) +query_result = query_builder.execute_aql_query(aql_query, bind_vars) +print("Query Result: ", query_result) + + + +### Debug Code End \ No newline at end of file diff --git a/cag/framework/component.py b/cag/framework/component.py index 46c08f7..294fcd3 100644 --- a/cag/framework/component.py +++ b/cag/framework/component.py @@ -18,7 +18,7 @@ class Component(object): - """The class from witch all more specialized components must derive.""" + """The class from which all more specialized components must derive.""" """ Structure of the subgraph produced by this component, to be specified in subclass. @@ -35,13 +35,14 @@ class Component(object): _name = "Component" def __init__(self, conf: Config = None): + print("Inside Component") edges = self._base_edge_definitions + self._edge_definitions - if conf is None: conf = configuration(use_global_conf=True) self.conf = conf self.database = conf.db self.graph_name = conf.graph + self.test = "TEST" if self.database.hasGraph(self.graph_name): self.graph: BaseGraph = self.database.graphs[self.graph_name] else: diff --git a/cag/utils/utils.py b/cag/utils/utils.py index 0cfe7fe..adc8d8c 100644 --- a/cag/utils/utils.py +++ b/cag/utils/utils.py @@ -3,6 +3,8 @@ import json import pkgutil import urllib +import random +import string from re import sub from pathlib import Path @@ -99,3 +101,8 @@ def load_sub_packages(package): def create_folder(path): Path(path).mkdir(parents=True, exist_ok=True) + +def generate_random_string(length:int) -> str: + letters = string.ascii_letters + string.digits + result_str = ''.join(random.choice(letters) for _ in range(length)) + return result_str \ No newline at end of file