forked from youngbin-ro/Multi2OIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract.py
72 lines (62 loc) · 3.42 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import torch
import numpy as np
import utils.bio as bio
from transformers import BertTokenizer
from tqdm import tqdm
def extract(args,
model,
loader,
output_path):
model.eval()
os.makedirs(output_path, exist_ok=True)
extraction_path = os.path.join(output_path, "extraction.txt")
tokenizer = BertTokenizer.from_pretrained(args.bert_config)
f = open(extraction_path, 'w')
for step, batch in tqdm(enumerate(loader), desc='eval_steps', total=len(loader)):
token_strs = [[word for word in sent] for sent in np.asarray(batch[-2]).T]
sentences = batch[-1]
token_ids, att_mask = map(lambda x: x.to(args.device), batch[:-2])
with torch.no_grad():
"""
We will iterate B(batch_size) times
because there are more than one predicate in one batch.
In feeding to argument extractor, # of predicates takes a role as batch size.
pred_logit: (B, L, 3)
pred_hidden: (B, L, D)
pred_tags: (B, P, L) ~ list of tensors, where P is # of predicate in each batch
"""
pred_logit, pred_hidden = model.extract_predicate(
input_ids=token_ids, attention_mask=att_mask)
pred_tags = torch.argmax(pred_logit, 2)
pred_tags = bio.filter_pred_tags(pred_tags, token_strs)
pred_tags = bio.get_single_predicate_idxs(pred_tags)
pred_probs = torch.nn.Softmax(2)(pred_logit)
# iterate B times (one iteration means extraction for one sentence)
for cur_pred_tags, cur_pred_hidden, cur_att_mask, cur_token_id, cur_pred_probs, token_str, sentence \
in zip(pred_tags, pred_hidden, att_mask, token_ids, pred_probs, token_strs, sentences):
# generate temporary batch for this sentence and feed to argument module
cur_pred_masks = bio.get_pred_mask(cur_pred_tags).to(args.device)
n_predicates = cur_pred_masks.shape[0]
if n_predicates == 0:
continue # if there is no predicate, we cannot extract.
cur_pred_hidden = torch.cat(n_predicates * [cur_pred_hidden.unsqueeze(0)])
cur_token_id = torch.cat(n_predicates * [cur_token_id.unsqueeze(0)])
cur_arg_logit = model.extract_argument(
input_ids=cur_token_id,
predicate_hidden=cur_pred_hidden,
predicate_mask=cur_pred_masks)
# filter and get argument tags with highest probability
cur_arg_tags = torch.argmax(cur_arg_logit, 2)
cur_arg_probs = torch.nn.Softmax(2)(cur_arg_logit)
cur_arg_tags = bio.filter_arg_tags(cur_arg_tags, cur_pred_tags, token_str)
# get string tuples and write results
cur_extractions, cur_extraction_idxs = bio.get_tuple(sentence, cur_pred_tags, cur_arg_tags, tokenizer)
cur_confidences = bio.get_confidence_score(cur_pred_probs, cur_arg_probs, cur_extraction_idxs)
for extraction, confidence in zip(cur_extractions, cur_confidences):
if args.binary:
f.write("\t".join([sentence] + [str(1.0)] + extraction[:3]) + '\n')
else:
f.write("\t".join([sentence] + [str(confidence)] + extraction) + '\n')
f.close()
print("\nExtraction Done.\n")