-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
449 lines (345 loc) · 17.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import sys, os
import argparse
import glob
from pathlib import Path
import torch
import torch.optim as optim
import numpy as np
from models.models import VAE
from process.solver import Solver
from process.loss import LossFunction, LossBVAE, LossBVAE2, LossTCVAE, LossJoints
from log.logger import Logger
from data.dataloader import load_frame, create_dataloader
# from process.experiments import evaluate, traverse_latents, save_graph, plot_3d_model, run, getDisentanglementMetric
from process.experiments import (
traverse_latents,
save_graph,
plot_3d_model,
run,
getDisentanglementMetric,
svr_joints,
train_joints,
save_plots,
compare_joint_training,
plot_datasets
)
from torchsummary import summary
# todo: tc-vae loss
# todo: tc-vae metric
def main():
# arguments
args = parse_args()
print_config(args)
if args.save_plots:
save_plots()
return
if args.compare_joint_training:
compare_joint_training()
return
if args.plot_datasets:
plot_datasets()
return
# init solver
solver = init_solver(args)
# print model statistics
# solver.model.to("cuda")
# summary(solver.model, (1, 128, 128))
# load checkpoint:
if args.load_net_path != '':
solver.load_checkpoint(args.load_net_path)
elif args.load_epoch >= 0:
auto_load(solver, os.path.join(args.model_dir, args.basename), args.model, args.num_latents, args.load_epoch)
elif args.auto_load:
auto_load(solver, os.path.join(args.model_dir, args.basename), args.model, args.num_latents)
# train:
if args.train:
solver.train(args.train_dir, args.validation_dir, args.batch_size, args.epochs, args.checkpoint_interval, args.model_dir, args.overwrite, max_persons=args.max_persons, shuffle=args.shuffle)
if args.save_net_path != "":
if args.overwrite or not os.path.isfile(args.save_net_path):
solver.save_checkpoint(args.save_net_path)
else:
filename = "{}_{}.pt".format(os.path.join(args.model_dir, solver.logger.basename), solver.logger.epoch)
if args.overwrite or not os.path.isfile(filename):
solver.save_checkpoint(filename)
# test:
if args.test:
solver.test(args.test_dir, args.test_batch_size)
# experiments:
if args.experiments:
dataset_index = 15
input_frame = get_test_frame(args.input_frame, args.test_dir, dataset_index)
if args.run:
run(solver, input_frame)
if args.plot3d:
plot_3d_model(solver, input_frame)
if args.traverse_latents:
# traverse_latents(solver, input_frame, latents=torch.arange(-3, 3.1, 1/6.), log_label="traverse_{}".format(dataset_index))
dataloader = create_dataloader(args.test_dir, args.batch_size, normalize_input=True, max_persons=-1, shuffle=True)
for i in range(25):
input_frame = get_test_frame(args.input_frame, args.test_dir, i)
traverse_latents(solver, dataloader, input_frame, latents=torch.arange(-3, 3.1, 1/6.), log_label="traverse_{}".format(i))
if args.plot_graph:
# save_graph(solver, input_frame)
save_graph(solver)
if args.train_joints:
train_joints(solver, args.train_dir, args.validation_dir)
if args.evaluate:
# evaluate(solver)
# trainloader = create_dataloader(args.train_dir, args.batch_size, normalize_input=True, max_persons=-1, shuffle=True)
# getDisentanglementMetric(solver, trainloader)
svr_joints(solver, args.train_dir, args.validation_dir)
return # end of application
def get_test_frame(filename: Path=None, dataset: Path=None, dataset_index=0):
frame = None
if filename:
# load frame from file
print("using image {} for experiments".format(filename))
if not os.path.isfile(filename):
print("Cannot load {}".format(filename))
return frame
# if msra:
default_cubes = {
'P0': (200, 200, 200),
'P1': (200, 200, 200),
'P2': (200, 200, 200),
'P3': (180, 180, 180),
'P4': (180, 180, 180),
'P5': (180, 180, 180),
'P6': (170, 170, 170),
'P7': (160, 160, 160),
'P8': (150, 150, 150)}
# todo: allow passing optional args.input_cube instead of default cube
cube = None
for p, c in default_cubes.items():
if p in filename:
cube = c
break
dpt, M, com = load_frame(filename, docom=True, cube=cube)
frame = torch.from_numpy(dpt)
elif dataset:
# load frame from dataset
print("using image from dataset {} for experiments".format(dataset))
if os.path.isfile(dataset):
data = np.load(dataset)
frame = torch.from_numpy(data['train_data'])[dataset_index].squeeze(0)
else:
dataloader = create_dataloader(dataset, batch_size=1, normalize_input=True, shuffle=False)
for batch_idx, batch_input in enumerate(dataloader):
if batch_idx == dataset_index:
batch_input = batch_input[0]#.to(self.device) # batch_input[1] contains the target data (if this wasn't an autoencoder...)
if batch_input.dim() == 4:
batch_input = batch_input.squeeze(1)
frame = batch_input[0]
break
else:
# generate frame from random data
print("using random image for experiments")
frame = torch.randn(128, 128, dtype=torch.float)
return frame
def auto_load(solver: Solver, basename: Path, model: str, num_latents: int, epoch: int = None):
filenamebase = "{}_{}_{}_".format(basename, model, num_latents)
if epoch != None:
solver.load_checkpoint("{}_{}.pt".format(filenamebase, epoch))
return
max_epoch = None
filename = None
for tmp in glob.glob("{}*.pt".format(filenamebase)):
try:
epoch = int(tmp[len(filenamebase):-len(".pt")])
if os.path.isfile(tmp):
if max_epoch == None:
max_epoch = epoch
filename = tmp
elif epoch > max_epoch:
max_epoch = epoch
filename = tmp
except:
pass
if filename != None:
solver.load_checkpoint(filename)
else:
print("Auto-Load {}*.pt skipped".format(filenamebase))
def print_config(args):
sMode = "mode: "
if args.train:
sMode += "train; "
if args.test:
sMode += "test; "
if args.experiments:
sMode += "experiments; "
if args.evaluate:
sMode += "evaluate; "
if sMode == "mode: ":
sMode += "nothing selected"
print(sMode)
print("device: {}".format(args.device))
if args.seed > 0:
print("manual seed: {}".format(args.seed))
print("model: {}".format(args.model))
print("z-dim: {}".format(args.num_latents))
if args.model == 'bvae':
print("beta: {}".format(args.beta))
elif args.model == 'bvae2':
print("gamma: {}; max-capacity: {}; warmup-iterations: {}".format(args.gamma, args.max_capacity, args.capacity_increments))
elif args.model == 'tcvae':
pass
def init_solver(args):
# seed: random, manual:
if args.seed > 0:
torch.manual_seed(args.seed)
torch.manual_seed(torch.initial_seed())
# logger:
if args.no_logging:
logger = None
else:
logger = Logger(args.model, log_interval=args.log_interval, basename="{}_{}_{}".format(args.basename, args.model.lower(), args.num_latents))
logger.add_text("CommandLine", ' '.join(sys.argv))
# total_commandline = sys.argv[0]
for arg in vars(args):
logger.add_text("arg/" + arg, str(getattr(args, arg)))
#print(arg, getattr(args, arg))
#total_commandline += "--" + arg.replace('_', '-') + " " + str(getattr(args, arg))
output_dist = None
if args.output_dist:
output_dist = args.output_dist
milestones = []
# model:
if args.model == 'vae':
model = VAE(args.num_latents, output_dist=output_dist)
loss_function = LossBVAE(logger, beta=1.0)
elif args.model == 'bvae':
model = VAE(args.num_latents, output_dist=output_dist)
loss_function = LossBVAE(logger, beta=args.beta)
elif args.model == 'bvae2':
model = VAE(args.num_latents, output_dist=output_dist)
loss_function = LossBVAE2(logger, max_capacity=args.max_capacity, gamma=args.gamma)
elif args.model == 'tcvae':
model = VAE(args.num_latents, output_dist=output_dist)
loss_function = LossTCVAE(logger, beta=args.beta)
# milestones = [3500, 5000]
# milestones = [99999999]
elif args.model == 'cnn':
model = CNN()
loss_function = LossJoints(logger)
else:
sys.exit("Unknown model: {}".format(args.model))
loss_function.output_dist = model.output_dist
# torch.nn.init.xavier_uniform.apply(model)
# optimizer and learning rate scheduler:
# optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, betas=(0.9, 0.999))
#scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', verbose=True)
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[80, 100, 200, 300, 400, 500], gamma=0.1)
scheduler = None
if len(milestones) > 0:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
# solver:
return Solver(model, loss_function, optimizer, scheduler, args.device, logger)
def parse_args():
print(*sys.argv, sep=' ')
parser = argparse.ArgumentParser(description='HandPoseShapeVAE')
# general:
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA')
parser.add_argument('--seed', type=int, default=-1, metavar='S', help='random seed (default: 42)')
parser.add_argument('--basename', type=str, default='HandPoseShapeVAE')
parser.add_argument('--model-dir', type=str, default='../models')
# logging:
parser.add_argument('--log-interval', type=int, default=80, metavar='N', help='how many batches to wait before logging training status')
# traverse latents:
parser.add_argument('--no-logging', action='store_true', default=False)
# loading:
parser.add_argument('--load-net-path', type=str, default='')
parser.add_argument('--load_epoch', type=int, default=-1)
parser.add_argument('--auto-load', action='store_true', default=False)
# saving:
parser.add_argument('--overwrite', action='store_true', default=False)
parser.add_argument('--save-net-path', type=str, default='')
parser.add_argument('--auto-save', action='store_true', default=False)
parser.add_argument('--checkpoint-interval', type=int, default=10)
parser.add_argument('--save-examples', action='store_true', default=False)
# architecture:
parser.add_argument('--model', type=str, default='bvae2', choices=["vae", "bvae", "bvae2", "tcvae", "cnn"])#, "ae", "dcign", "sdvae"])
parser.add_argument('--num-latents', type=int, default=10) # 10, 120, 200, 32 for CelebA
#parser.add_argument('--output-params', type=int, default=1) # 1 (=no distr.), 2 (=normal distr.)
parser.add_argument('--output-dist', type=str, default='', choices=["normal", "bernoulli", "none", "fake_normal"])#, "normal", "bernoulli", "" => None
# train:
parser.add_argument('--train', action='store_true', default=False)
parser.add_argument('--train-dir', type=str)
# parser.add_argument('--train-dir', type=str, default='../data/preprocessed/msra/train')
# parser.add_argument('--train-dir', type=str, default='../data/preprocessed/rendered/train_merged.npz')
# parser.add_argument('--train-dir', type=str, default='../data/preprocessed/rendered/train_angles.npz')
# parser.add_argument('--train-dir', type=str, default='../data/preprocessed/rendered/train_spread.npz')
# parser.add_argument('--train-dir', type=str, default='../data/preprocessed/rendered/train_open.npz')
# parser.add_argument('--train-dir', type=str, default='../data/preprocessed/rendered/train_shape.npz')
parser.add_argument('--max-persons', type=int, default=-1, help='Restrict training to a subset for faster testing (default: <=0 <==> train all)')
parser.add_argument('--batch-size', type=int, default=600, metavar='N', help='input batch size for training (default: 80)')
parser.add_argument('--epochs', type=int, default=250, metavar='N', help='number of epochs to train (default: 10)')
parser.add_argument('--shuffle', action='store_true', default=False)
parser.add_argument('--learning-rate', type=float, default=5e-4, metavar='LR', help='learning rate for Adam optimizer (default: 5e-4)')
# validate:
parser.add_argument('--validation-dir', type=str)
# parser.add_argument('--validation-dir', type=str, default='../data/preprocessed/msra/validate')
# parser.add_argument('--validate-dir', type=str, default='../data/preprocessed/rendered/validate_merged.npz')
# parser.add_argument('--validate-dir', type=str, default='../data/preprocessed/rendered/validate_angles.npz')
# parser.add_argument('--validate-dir', type=str, default='../data/preprocessed/rendered/validate_spread.npz')
# parser.add_argument('--validate-dir', type=str, default='../data/preprocessed/rendered/validate_open.npz')
# parser.add_argument('--validate-dir', type=str, default='../data/preprocessed/rendered/validate_shape.npz')
# test:
parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--test-dir', type=str)
# parser.add_argument('--test-dir', type=str, default='../data/preprocessed/msra/test')
# parser.add_argument('--test-dir', type=str, default='../data/preprocessed/msra/test_pose')
# parser.add_argument('--test-dir', type=str, default='../data/preprocessed/msra/test_shape')
# parser.add_argument('--test-dir', type=str, default='../data/preprocessed/rendered/test_merged.npz')
# parser.add_argument('--test-dir', type=str, default='../data/preprocessed/rendered/test_angles.npz')
# parser.add_argument('--test-dir', type=str, default='../data/preprocessed/rendered/test_spread.npz')
# parser.add_argument('--test-dir', type=str, default='../data/preprocessed/rendered/test_open.npz')
# parser.add_argument('--test-dir', type=str, default='../data/preprocessed/rendered/test_shape.npz')
parser.add_argument('--test-batch-size', type=int, default=650, metavar='N', help='input batch size for testing (default: 100)')
# experiments:
parser.add_argument('--experiments', action='store_true', default=False, help='run experiments')
parser.add_argument('--input-frame', type=str, default='')
# train joints:
parser.add_argument('--train-joints', action='store_true', default=False)
# evaluation:
parser.add_argument('--evaluate', action='store_true', default=False)
# run:
parser.add_argument('--run', action='store_true', default=False, help='process a single frame')
parser.add_argument('--output-frame', type=str, default='../data/MSRA15/example/output.bin')
parser.add_argument('--output-image', type=str, default='../data/MSRA15/example/output.jpg')
parser.add_argument('--output-joints', type=str, default='../data/MSRA15/example/output.tsv')
# traverse:
parser.add_argument('--traverse-latents', action='store_true', default=False)
# plot 3d model:
parser.add_argument('--plot3d', action='store_true', default=False)
# plot nn graph:
parser.add_argument('--plot-graph', action='store_true', default=False)
# plots etc for report:
# save plots:
parser.add_argument('--save-plots', action='store_true', default=False)
# compare joint learning:
parser.add_argument('--compare-joint-training', action='store_true', default=False)
# plot datasets:
parser.add_argument('--plot-datasets', action='store_true', default=False)
# architecture-specific arguments:
# dcign (deprecated): Kulkarni, Tejas D.; Whitney, Will; Kohli, Pushmeet; Tenenbaum, Joshua B. (2015): Deep Convolutional Inverse Graphics Network.
# parser.add_argument('--disentangle', action='store_true', default=False)
# parser.add_argument('--pose-dict', type=str, default='pose_dict_small.pth')
# bvae: β-VAE. LEARNING BASIC VISUAL CONCEPTS WITH A CONSTRAINED VARIATIONAL FRAMEWORK (2017).
parser.add_argument('--beta', type=float, default=15.0)
# bvae2: Burgess, Christopher P.; Higgins, Irina; Pal, Arka; Matthey, Loic; Watters, Nick; Desjardins, Guillaume; Lerchner, Alexander (2018): Understanding disentangling in $β$-VAE.
parser.add_argument('--max-capacity', type=float, default=250.0) # 25nats for dSprites, 50nats for CelebA /linear increment over 100.000 iterations
parser.add_argument('--gamma', type=float, default=1000.0) # chosen to be large enough to ensure the actual KL is always close to the target KL
parser.add_argument('--capacity-increments', type=int, default=1500000.0)
# tcvae: Chen, Tian Qi; Li, Xuechen; Grosse, Roger; Duvenaud, David (2018): Isolating Sources of Disentanglement in Variational Autoencoders.
# todo: implement
args = parser.parse_args()
args.use_cuda = not args.no_cuda and torch.cuda.is_available()
args.device = torch.device("cuda" if args.use_cuda else "cpu")
args.model = args.model.lower()
if not args.auto_save:
args.checkpoint_interval = -1
return args
if __name__ == '__main__':
main()
print("Finished!")