-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathreservoirPredict_PN+selGen.R
515 lines (442 loc) · 21 KB
/
reservoirPredict_PN+selGen.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
"""
Babayan, Orton & Streicker
Predicting Reservoir Hosts and Arthropod Vectors from Evolutionary Signatures in RNA Virus Genomes
-- Reservoir host prediction from selected genomic features and phylogenetic neighborhoods
"""
rm(list=ls())
setwd("") # Set local working directory where files are located
library(plyr)
library(h2o) # https://www.h2o.ai/products/h2o/
library(dplyr)
library(reshape2)
library(ape)
library(seqinr)
library(matrixStats)
`%not in%` <- function (x, table) is.na(match(x, table, nomatch=NA_integer_))
# Start h2o JVM
localh20<-h2o.init(nthreads = -1) # Start a local H2O cluster using nthreads = num available cores
# Read data from file
f1<-read.csv(file="BabayanEtAl_VirusData.csv",header=T)
allP<-read.fasta(file ="BabayanEtAl_sequences.fasta", seqtype = "DNA", as.string = TRUE, seqonly = F, strip.desc = T)
fis<-read.csv(file="featureImportance_reservoir.csv",header=T)
# Feature definition
dinucs<-grep("[A|T|G|C|U]p[A|T|G|C|U]",names(f1),value=T)
cps<-grep(".[A|C|D|E|F|G|H|I|K|L|M|N|P|Q|R|S|T|V|W|X|Y]..[A|T|G|C|U]",names(f1),value=T)
aa.codon.bias<-grep(".Bias",names(f1),value=T)
# Feature selection (simplify dataset to required columns)
nfeats<-50
totalfeats<-length(fis$vimean)
f<-seq(from = totalfeats-(nfeats-1),to = totalfeats, by=1)
gen.feats<-as.character(fis$X[f])
f1<-f1[,c("Virus.name","Genbank.accession","Reservoir","Viral.group","Vector.borne","Vector",gen.feats)]
# Remove orphans
f2<-subset(f1,f1$Reservoir!="Orphan")
f<-droplevels(f2)
o<-subset(f1,f1$Reservoir=="Orphan")
orphans<-o[with(o,order(Viral.group,Virus.name,decreasing=T)),]
# Group selection based on thresholds
t<-15 # threshold for minimum sample size of groups
s<-.7 # proportion in the training set
host.counts<-table(f$Reservoir)
min.t<-host.counts[host.counts>=t] # minimum number of viruses per host group
f_st3<-f[f$Reservoir %in% c(names(min.t)),]
f_st3<-droplevels(f_st3)
f_st3$SeqName2<-do.call(rbind,strsplit(as.character(f_st3$Genbank.accession),"[.]"))[,1]
# Rare hosts
rare<-f[!f$Reservoir %in% c(names(min.t)),]
rare<-droplevels(rare)
rare$SeqName2<-do.call(rbind,strsplit(as.character(rare$Genbank.accession),"[.]"))[,1]
# Number and names of host taxa
ntax<-length(unique(f_st3$Reservoir))
bp<-as.character(sort(unique(f_st3$Reservoir)))
# sample split of training/test to get counts in each
trains<-f_st3 %>% group_by(Reservoir) %>%
filter(Genbank.accession %in% sample(unique(Genbank.accession), ceiling(s*length(unique(Genbank.accession)))))
testval<-subset(f_st3,!(f_st3$Genbank.accession %in% trains$Genbank.accession)) # ref numbers absent from training set
optims<-testval %>% group_by(Reservoir) %>%
filter(Genbank.accession %in% sample(unique(Genbank.accession), floor(.5*length(unique(Genbank.accession)))))
tests<-subset(testval,!(testval$Genbank.accession %in% optims$Genbank.accession)) # ref numbers in testval set absent from test set
ntest<-dim(tests)[1]
# write orphan sequences
orp<-allP[c(which(names(allP) %in% orphans$Genbank.accession))]
write.fasta(orp,names(orp),file.out="orphanDB.fasta", open = "w", nbchar = 100, as.string = T)
# write rare host sequences
rar<-allP[c(which(names(allP) %in% rare$Genbank.accession))]
write.fasta(rar,names(rar),file.out="rareDB.fasta", open = "w", nbchar = 100, as.string = T)
# Remove unneeded files
rm(f,f1,f2,fis,rar,orp)
# Train many models
set.seed(78910)
nloops<-550
lr<-c()
md<-c()
sr<-c()
csr<-c()
nt<-c()
mr<-c()
accuracy.st3<-c()
pc.accuracy<-matrix(nrow=nloops,ncol=ntax)
test.record<-matrix(nrow=ntest,ncol=nloops)
nfeatures<-length(gen.feats)+ntax
vimps<-matrix(nrow=nfeatures,ncol=nloops)
for (i in 1:nloops){
# Stratified random
trains<-f_st3 %>% group_by(Reservoir) %>%
filter(Genbank.accession %in% sample(unique(Genbank.accession), ceiling(s*length(unique(Genbank.accession)))))
testval<-subset(f_st3,!(f_st3$Genbank.accession %in% trains$Genbank.accession)) # ref numbers absent from training set
optims<-testval %>% group_by(Reservoir) %>%
filter(Genbank.accession %in% sample(unique(Genbank.accession), floor(.5*length(unique(Genbank.accession)))))
tests<-subset(testval,!(testval$Genbank.accession %in% optims$Genbank.accession)) # ref numbers in testval set absent from test set
trains<-droplevels(trains)
tests<-droplevels(tests)
optims<-droplevels(optims)
test.record[,i]<-as.character(tests$Genbank.accession)
# Select and write sequences to local directory
trainSeqs<-allP[c(which(names(allP) %in% trains$Genbank.accession))] # pick sequences in the training set
testSeqs<-allP[c(which(names(allP) %in% tests$Genbank.accession))] # pick sequences in the validation set
optSeqs<-allP[c(which(names(allP) %in% optims$Genbank.accession))] # pick sequences in the optimization set
write.fasta(testSeqs, names(testSeqs), file.out="testDB.fasta", open = "w", nbchar = 100, as.string = T)
write.fasta(trainSeqs, names(trainSeqs), file.out="trainDB.fasta", open = "w", nbchar = 100, as.string = T)
write.fasta(optSeqs, names(optSeqs), file.out="optDB.fasta", open = "w", nbchar = 100, as.string = T)
# BLAST
system("makeblastdb -in trainDB.fasta -dbtype nucl -parse_seqids -out allTrainingDB",intern=F)
# Blast test against training
system("blastn -db allTrainingDB -query testDB.fasta -out testOut.out -num_threads 4 -outfmt 10 -max_target_seqs=5 -max_hsps 1 -reward 2 -task blastn -evalue 10 -word_size 8 -gapopen 2 -gapextend 2",inter=F,wait=FALSE)
# Blast validation against training
system("blastn -db allTrainingDB -query optDB.fasta -out optOut.out -num_threads 4 -outfmt 10 -max_target_seqs=5 -max_hsps 1 -reward 2 -task blastn -evalue 10 -word_size 8 -gapopen 2 -gapextend 2",inter=F,wait=FALSE)
# Orphan blast (take top 5 hits)
system("blastn -db allTrainingDB -query orphanDB.fasta -out orphanOut.out -num_threads 4 -outfmt 10 -max_target_seqs=5 -max_hsps 1 -reward 2 -task blastn -evalue 10 -word_size 8 -gapopen 2 -gapextend 2",inter=F,wait=FALSE)
# Rare blast (take top 5 hits)
system("blastn -db allTrainingDB -query rareDB.fasta -out rareOut.out -num_threads 4 -outfmt 10 -max_target_seqs=5 -max_hsps 1 -reward 2 -task blastn -evalue 10 -word_size 8 -gapopen 2 -gapextend 2",inter=F,wait=FALSE)
# Blast training against the training set (take top 5 hits)
system("blastn -db allTrainingDB -query trainDB.fasta -out trainOut.out -num_threads 4 -outfmt 10 -max_target_seqs=6 -max_hsps 1 -reward 2 -task blastn -evalue 10 -word_size 8 -gapopen 2 -gapextend 2",inter=F,wait=TRUE)
# Read in Blast output for training set
allBlast<-read.csv(file="trainOut.out",col.names = c("query acc.", "subject acc.", "% identity", "alignment length", "mismatches", "gap opens", "q. start", "q. end"," s. start"," s. end"," evalue"," bit score"),header=F)
# Summarize blast hits
nvir<-length(unique(allBlast$query.acc.))
virnames<-unique(allBlast$query.acc.)
ecutoff<-1E-3
j=1
d<-subset(allBlast,allBlast$query.acc.==virnames[j])
d2<-subset(d,d$X..identity<100)
d2<-subset(d2,d2$X.evalue<ecutoff)
# Assign equal probability across all hosts if there is no good blast hit
for (z in 1:1){
if (nrow(d2)==0){
blast.uc<-rep(1/ntax,ntax)
blast.uc<-data.frame(t(blast.uc))
colnames(blast.uc)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc<-cbind(id,blast.uc)}
else {
dhost<-merge(d2,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=F)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(virnames[j])
blast.uc<-cbind(id,hosts)}}
for (j in 2:nvir){
d<-subset(allBlast,allBlast$query.acc.==virnames[j])
d2<-subset(d,d$X..identity<100)
d2<-subset(d2,d2$X.evalue<ecutoff)
if (nrow(d2)==0){
blast.uc.s<-rep(1/ntax,ntax)
blast.uc.s<-data.frame(t(blast.uc.s))
colnames(blast.uc.s)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc.s<-cbind(id,blast.uc.s)}
else {
dhost<-merge(d2,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=T)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(virnames[j])
blast.uc.s<-cbind(id,hosts)}
blast.uc<-rbind(blast.uc,blast.uc.s)}
f1_train<-merge(trains,blast.uc,by.x="Genbank.accession",by.y="id",all.x=F,all.y=T)
set<-c("Reservoir",gen.feats,bp)
f1_train<-f1_train[,c(set)] # this is the full training dataset with genomic features and blast probabilities
# Summarize blast hits from test set
testBlast<-read.csv(file="testOut.out",col.names = c("query acc.", "subject acc.", "% identity", "alignment length", "mismatches", "gap opens", "q. start", "q. end"," s. start"," s. end"," evalue"," bit score"),header=F)
nvir<-length(unique(testBlast$query.acc.))
virnames<-unique(testBlast$query.acc.)
ecutoff<-1E-3
j=1
d<-subset(testBlast,testBlast$query.acc.==virnames[j])
d2<-subset(d,d$X.evalue<ecutoff)
for (z in 1:1){
if (nrow(d2)==0){
blast.uc<-rep(1/ntax,ntax)
blast.uc<-data.frame(t(blast.uc))
colnames(blast.uc)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc<-cbind(id,blast.uc)}
else {
dhost<-merge(d2,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=F)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(virnames[j])
blast.uc<-cbind(id,hosts)}}
for (j in 2:nvir){
d<-subset(testBlast,testBlast$query.acc.==virnames[j])
d2<-subset(d,d$X.evalue<ecutoff)
if (nrow(d2)==0){
blast.uc.s<-rep(1/ntax,ntax)
blast.uc.s<-data.frame(t(blast.uc.s))
colnames(blast.uc.s)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc.s<-cbind(id,blast.uc.s) }
else {
dhost<-merge(d,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=T)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(d$query.acc.[1])
blast.uc.s<-cbind(id,hosts)}
blast.uc<-rbind(blast.uc,blast.uc.s)}
f1_test<-merge(tests,blast.uc,by.x="Genbank.accession",by.y="id",all.x=F,all.y=T)
testID<-f1_test$Virus.name
set<-c("Reservoir",gen.feats,bp)
f1_test<-f1_test[,c(set)]
# Summarize blast hits from optimization set
optBlast<-read.csv(file="optOut.out",col.names = c("query acc.", "subject acc.", "% identity", "alignment length", "mismatches", "gap opens", "q. start", "q. end"," s. start"," s. end"," evalue"," bit score"),header=F)
nvir<-length(unique(optBlast$query.acc.))
virnames<-unique(optBlast$query.acc.)
ecutoff<-1E-3
j=1
d<-subset(optBlast,optBlast$query.acc.==virnames[j])
d2<-subset(d,d$X.evalue<ecutoff)
for (z in 1:1){
if (nrow(d2)==0){
blast.uc<-rep(1/ntax,ntax)
blast.uc<-data.frame(t(blast.uc))
colnames(blast.uc)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc<-cbind(id,blast.uc)}
else {
dhost<-merge(d2,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=F)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(virnames[j])
blast.uc<-cbind(id,hosts)}}
for (j in 2:nvir){
d<-subset(optBlast,optBlast$query.acc.==virnames[j])
d2<-subset(d,d$X.evalue<ecutoff)
if (nrow(d2)==0){
blast.uc.s<-rep(1/ntax,ntax)
blast.uc.s<-data.frame(t(blast.uc.s))
colnames(blast.uc.s)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc.s<-cbind(id,blast.uc.s) }
else {
dhost<-merge(d,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=T)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(d$query.acc.[1])
blast.uc.s<-cbind(id,hosts)}
blast.uc<-rbind(blast.uc,blast.uc.s)}
f1_opt<-merge(optims,blast.uc,by.x="Genbank.accession",by.y="id",all.x=F,all.y=T)
optID<-f1_opt$Virus.name
set<-c("Reservoir",gen.feats,bp)
f1_opt<-f1_opt[,c(set)]
# Summarize blast hits from orphan set
oBlast<-read.csv(file="orphanOut.out",col.names = c("query acc.", "subject acc.", "% identity", "alignment length", "mismatches", "gap opens", "q. start", "q. end"," s. start"," s. end"," evalue"," bit score"),header=F)
nvir<-length(unique(oBlast$query.acc.))
virnames<-unique(oBlast$query.acc.)
j=1
d<-subset(oBlast,oBlast$query.acc.==virnames[j])
d2<-subset(d,d$X.evalue<ecutoff)
for (z in 1:1){
if (nrow(d2)==0){
blast.uc<-rep(1/ntax,ntax)
blast.uc<-data.frame(t(blast.uc))
colnames(blast.uc)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc<-cbind(id,blast.uc)}
else {
dhost<-merge(d2,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=F)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(virnames[j])
blast.uc<-cbind(id,hosts)}}
for (j in 2:nvir){
d<-subset(oBlast,oBlast$query.acc.==virnames[j])
d2<-subset(d,d$X.evalue<ecutoff)
if (nrow(d2)==0){
blast.uc.s<-rep(1/ntax,ntax)
blast.uc.s<-data.frame(t(blast.uc.s))
colnames(blast.uc.s)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc.s<-cbind(id,blast.uc.s) }
else {
dhost<-merge(d,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=T)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(d$query.acc.[1])
blast.uc.s<-cbind(id,hosts)}
blast.uc<-rbind(blast.uc,blast.uc.s)}
f1_orphan<-merge(orphans,blast.uc,by.x="Genbank.accession",by.y="id",all.x=T,all.y=T,sort=F)
set<-c(gen.feats,bp)
f1_orphan<-f1_orphan[,c(set)]
# Summarize blast hits from rare virus set
rBlast<-read.csv(file="rareOut.out",col.names = c("query acc.", "subject acc.", "% identity", "alignment length", "mismatches", "gap opens", "q. start", "q. end"," s. start"," s. end"," evalue"," bit score"),header=F)
nvir<-length(unique(rBlast$query.acc.))
virnames<-unique(rBlast$query.acc.)
j=1
d<-subset(rBlast,rBlast$query.acc.==virnames[j])
d2<-subset(d,d$X.evalue<ecutoff)
for (z in 1:1){
if (nrow(d2)==0){
blast.uc<-rep(1/ntax,ntax)
blast.uc<-data.frame(t(blast.uc))
colnames(blast.uc)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc<-cbind(id,blast.uc)}
else {
dhost<-merge(d2,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=F)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(virnames[j])
blast.uc<-cbind(id,hosts)}}
for (j in 2:nvir){
d<-subset(rBlast,rBlast$query.acc.==virnames[j])
d2<-subset(d,d$X.evalue<ecutoff)
if (nrow(d2)==0){
blast.uc.s<-rep(1/ntax,ntax)
blast.uc.s<-data.frame(t(blast.uc.s))
colnames(blast.uc.s)<-sort(unique(trains$Reservoir))
id<-as.character(virnames[j])
blast.uc.s<-cbind(id,blast.uc.s) }
else {
dhost<-merge(d,trains,by.x="subject.acc.",by.y="Genbank.accession",all.x = T,all.y = F)
dhost$rel.support<-dhost$X..identity/sum(dhost$X..identity)
hosts<-tapply(dhost$rel.support,dhost$Reservoir,sum,na.rm=T)
hosts[is.na(hosts)]<-0
hosts<-t(data.frame(hosts))
hosts<-data.frame(hosts)
id<-as.character(d$query.acc.[1])
blast.uc.s<-cbind(id,hosts)}
blast.uc<-rbind(blast.uc,blast.uc.s)}
f1_rare<-merge(rare,blast.uc,by.x="Genbank.accession",by.y="id",all.x=T,all.y=T,sort=F)
set<-c(gen.feats,bp)
f1_rare<-f1_rare[,c(set)]
# Convert to h2o data frames
train<-as.h2o(f1_train)
test<-as.h2o(f1_test)
opt<-as.h2o(f1_opt)
orp<-as.h2o(f1_orphan)
rar<-as.h2o(f1_rare)
# Clean up
rm(f1_train,f1_test,f1_opt,f1_orphan,f1_rare)
# Identity the response column
y <- "Reservoir"
# Identify the predictor columns
x <- setdiff(names(train), y)
# Convert response to factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])
opt[,y] <- as.factor(opt[,y])
# Train and validate a grid of GBMs
gbm_params <- list(learn_rate = c(.001,seq(0.01, 0.2, .02)),
max_depth = seq(6, 15, 1),
sample_rate = seq(0.6, 1.0, 0.1),
col_sample_rate = seq(0.5, 1.0, 0.1),
ntrees=c(100,150,200),
min_rows=c(5,8,10))
search_criteria <- list(strategy = "RandomDiscrete",
max_models = 500,
stopping_rounds=10,
stopping_metric="misclassification",
stopping_tolerance=1e-3)
gbm_grid <- h2o.grid("gbm", x = x, y = y,
grid_id = "gbm_grid",
training_frame = train,
validation_frame = opt,
seed = 1,
hyper_params = gbm_params,
search_criteria = search_criteria)
gbm_gridperf <- h2o.getGrid(grid_id = "gbm_grid",
sort_by = "accuracy",
decreasing = TRUE)
# Grab the model_id for the top GBM model
best_gbm_model_id <- gbm_gridperf@model_ids[[1]]
best_gbm <- h2o.getModel(best_gbm_model_id)
perf <- h2o.performance(best_gbm, test)
# Record best settings
lr[i]<-as.numeric(gbm_gridperf@summary_table[1,2]) # learn_rate
sr[i]<-as.numeric(gbm_gridperf@summary_table[1,6]) # sample_rate
md[i]<-as.numeric(gbm_gridperf@summary_table[1,3]) # maxdepth
csr[i]<-as.numeric(gbm_gridperf@summary_table[1,1]) # col_sample_rate
mr[i]<-as.numeric(gbm_gridperf@summary_table[1,4]) # col_sample_rate
nt[i]<-as.numeric(gbm_gridperf@summary_table[1,5]) # col_sample_rate
# Print confusion matrix
cm1<-h2o.confusionMatrix(perf)
nclass<-length(unique(trains$Reservoir))
cm2<-cm1[1:nclass,1:nclass]
cm<-as.matrix(cm2)
norm_cm<-cm/rowSums(cm)
accuracy.st3[i]=sum(diag(cm))/sum(cm)
pc.accuracy[i,]<-t(diag(cm)/rowSums(cm))
write.csv(norm_cm,file=paste("Reservoir_selGen+PN_CM",i,".csv"))
# Retreive feature importance
vi <- h2o.varimp(best_gbm)
data2 <- vi[order(vi[,1],decreasing=FALSE),]
vimps[,i]<-data2[,4]
# Orphan predictions
orp.pred <- h2o.predict(best_gbm, orp)
df<-orp.pred[,c(2:(ntax+1))]
df2<-as.data.frame(df)
row.names(df2)<-orphans$Virus.name
write.csv(df2,file=paste("Orphans",i,".csv",sep="_"))
# Rare predictions
rar.pred <- h2o.predict(best_gbm, rar)
df<-rar.pred[,c(2:(ntax+1))]
df2<-as.data.frame(df)
row.names(df2)<-rare$Virus.name
write.csv(df2,file=paste("ST5_RareVirus",i,".csv",sep="_"))
# Test set predictions
test.pred<-h2o.predict(best_gbm,test[,2:length(names(test))])
df2<-as.data.frame(test.pred)
row.names(df2)<-testID
write.csv(df2,file=paste("TestPred",i,".csv",sep="_"))
# Clean up
h2o.rm("gbm_grid")
rm(oBlast,testBlast,allBlast,rBlast,trainSeqs,testSeqs,optSeqs,gbm_grid,best_gbm,train,test,opt,df2,optims)
}
accs<-data.frame(accuracy.st3,pc.accuracy,lr,sr,md,csr)
colnames(accs)[2:(ntax+1)]<-row.names(cm)
row.names(vimps)<-data2$variable
# Write results summaries
write.csv(vimps,file="Reservoir_PN+SelGen50_FI.csv",row.names = T)
write.csv(accs,file="Reservoir_PN+SelGen50_out.csv",row.names=F)
# Null model accuracy
prob<-table(trains$response)/sum(table(trains$response))
vecs<-table(tests$response)
chanceAccurate<-round(sum(prob*vecs),digits=0)
tot<-sum(vecs)
nullAcc<-chanceAccurate/tot
print(nullAcc)