-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathxlib.ml
1182 lines (1029 loc) · 38.3 KB
/
xlib.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(****************************************************************************)
(* Useful functions on types, terms and other data structures. *)
(****************************************************************************)
(*REMOVE
unset_jrh_lexer;;
REMOVE*)
open Xprelude
open Fusion
(****************************************************************************)
(* Ranges of proof indexes. *)
(****************************************************************************)
type range = Only of int | Upto of int | All | Inter of int * int;;
let in_range = function
| Only x -> fun k -> k = x
| Upto x -> fun k -> k <= x
| All -> fun _ -> true
| Inter(x,y) -> fun k -> x <= k && k <= y
;;
(* [iter_parts n k f] splits the interval [0..n-1] in [k] parts and
calls [f 1 x1 y1], .., [f k xk yk] where [xi] and [yi] are the
starting and ending indexes (starting from 0) of part [i]. *)
let iter_parts nb_proofs nb_parts f =
let part_size = nb_proofs / nb_parts in
let x = ref 0 in
for i = 1 to nb_parts - 1 do
let y = !x + part_size in f i !x (y-1); x := y
done;
f nb_parts !x (nb_proofs - 1)
;;
(****************************************************************************)
(* Functions on numbers. *)
(****************************************************************************)
let percent k n = (100 * k) / n;;
(****************************************************************************)
(* Functions on system calls. *)
(****************************************************************************)
let command s =
if Sys.command s <> 0 then (log "Error: \"%s\" failed.\n" s; exit 1);;
(****************************************************************************)
(* Functions on files. *)
(****************************************************************************)
let log_open_out n = log_gen n; open_out n;;
let log_open_out_bin n = log_gen n; open_out_bin n;;
let log_open_in_bin n = log_read n; open_in_bin n;;
let create_file n f = let oc = log_open_out n in f oc; close_out oc;;
let create_file_bin n f = let oc = log_open_out_bin n in f oc; close_out oc;;
let read_file_bin n f = let ic = log_open_in_bin n in f ic; close_in ic;;
let concat f1 f2 f3 =
log "generate %s ...\n%!" f3; command ("cat "^f1^" "^f2^" > "^f3)
;;
let remove f = command ("rm -f "^f);;
let copy f1 f2 = log "generate %s ...\n%!" f2; command ("cp -f "^f1^" "^f2);;
let rename f1 f2 = log "generate %s ...\n%!" f2; command ("mv -f "^f1^" "^f2);;
(* [string_of_file f] puts the contents of file [f] in a string. *)
let string_of_file f =
let ic = open_in f in
let n = in_channel_length ic in
let s = Bytes.create n in
really_input ic s 0 n;
close_in ic;
Bytes.to_string s
;;
(* [read_val f] reads value from file [f]. *)
let read_val dump_file =
log_read dump_file;
let ic = open_in_bin dump_file in
let v = input_value ic in
close_in ic;
v
(* [write_val f v] write [v] in file [f]. *)
let write_val dump_file v =
log_gen dump_file;
let oc = open_out_bin dump_file in
output_value oc v;
close_out oc
(****************************************************************************)
(* Functions on strings. *)
(****************************************************************************)
let add_prefix prefix f x = prefix^f x;;
let concat_map f xs = String.concat "" (List.map f xs);;
let part i = "_part_" ^ string_of_int i;;
(* [get_part s suffix] returns [Some(n,k)] if [s=n^suffix^part(k)],
and [None] otherwise. *)
let get_part s suffix =
try
let len_s = String.length s in
let i = ref (len_s - 1) in
(* compute part number *)
let k =
while !i >= 0 && s.[!i] <> '_' do decr i done;
if !i < 0 then raise Exit;
int_of_string (String.sub s (!i+1) (len_s - 1 - !i))
in
(* compute theorem name *)
let len_suffix = String.length suffix + String.length "_part_" in
if !i < len_suffix then raise Exit;
let n = String.sub s 0 (!i - len_suffix + 1) in
Some(n,k)
with Exit -> None
;;
(* [replace c1 c2 s] returns a new string identical to [s] but with
every character [c1] replaced by [c2]. *)
let replace c1 c2 s =
let b = String.to_bytes s in
for i=0 to Bytes.length b - 1 do
if Bytes.get b i = c1 then Bytes.set b i c2
done;
String.of_bytes b
(* [starts_with p s] says if the string [s] starts by [p]. *)
let starts_with p s =
let n = String.length p in String.length s >= n && p = String.sub s 0 n
let _ =
assert (starts_with "a" "" = false);
assert (starts_with "a" "a" = true);
assert (starts_with "a" "b" = false);
assert (starts_with "a" "ab" = true);
assert (starts_with "" "a" = true)
(* [change_prefix p q s] returns a string equal to [s] except if [s]
starts with [p], in which case [p] is replaced by [q]. *)
let change_prefix p q s =
let n = String.length p in
if starts_with p s then q ^ String.sub s n (String.length s - n) else s
let _ =
assert (change_prefix "a" "b" "" = "");
assert (change_prefix "a" "b" "a" = "b");
assert (change_prefix "a" "b" "c" = "c");
assert (change_prefix "a" "b" "cd" = "cd");
assert (change_prefix "a" "b" "ac" = "bc")
(* [change_prefixes l s] returns [s] if [s] starts with no string in
[List.map fst l]. Otherwise it returns [change_prefix p q s] where
[(p,q)] is the first element of [l] such that [starts_with p s]. *)
let rec change_prefixes l s =
match l with
| [] -> s
| (p,q)::l ->
let n = String.length p in
if starts_with p s then q ^ String.sub s n (String.length s - n)
else change_prefixes l s
(****************************************************************************)
(* Functions on lists. *)
(****************************************************************************)
(* [pos_first f l] returns the position (counting from 0) of the first
element of [l] satisfying [f]. Raises Not_found if there is no such
element. *)
let pos_first f =
let rec aux k l =
match l with
| [] -> raise Not_found
| y::l -> if f y then k else aux (k+1) l
in aux 0
;;
(* [remove_elts l l'] returns the elements of [l'] not in [l]. *)
let remove_elts l l' =
List.fold_left (fun l' x -> if List.mem x l then l' else x::l') [] l'
;;
(****************************************************************************)
(* Functions on hash tables. *)
(****************************************************************************)
(* [bindings ht] returns the list of bindings in the hash table [ht]. *)
let bindings ht = Hashtbl.fold (fun x y acc -> (x,y)::acc) ht [];;
let sorted_bindings ht = List.sort Stdlib.compare (bindings ht);;
(* [array_of_hashtbl ht] turns an hash table into an array. *)
let array_of_hashtbl ht =
Array.init (Hashtbl.length ht) (Hashtbl.find ht)
;;
(****************************************************************************)
(* Printing functions. See
https://www.lexifi.com/blog/ocaml/note-about-performance-printf-and-format/#*)
(****************************************************************************)
let char = output_char;;
let string = output_string;;
let int oc k = string oc (string_of_int k);;
let quote f oc x = char oc '\"'; f oc x; char oc '\"';;
let paren f oc x = char oc '('; f oc x; char oc ')';;
let set f oc x = char oc '{'; f oc x; char oc '}';;
let bracket f oc x = char oc '['; f oc x; char oc ']';;
let ostring = quote string;;
let digest oc d = string oc (Digest.to_hex d);;
let pair f g oc (x,y) = f oc x; char oc ','; g oc y;;
let opair f g = paren (pair f g);;
let prefix pre elt oc x = string oc pre; elt oc x;;
let suffix elt suf oc x = elt oc x; string oc suf;;
let list_sep sep elt oc xs =
match xs with
| [] -> ()
| x::xs -> elt oc x; List.iter (prefix sep elt oc) xs
;;
let list elt oc = List.iter (elt oc);;
let olist elt = bracket (list_sep "; " elt);;
let list_prefix p elt oc xs = list (prefix p elt) oc xs;;
let array elt oc = Array.iter (elt oc);;
let oarray elt = bracket (array (suffix elt "; "));;
let set_int oc s =
char oc '{'; SetInt.iter (fun k -> int oc k; char oc ';') s; char oc '}';;
let set_str oc s =
char oc '{'; SetStr.iter (fun s -> string oc s; char oc ';') s; char oc '}';;
let htbl ppkey ppval oc ht =
(*Hashtbl.iter (opair oc)*)
List.iter (opair ppkey ppval oc) (sorted_bindings ht);;
let hstats oc hs =
let open Hashtbl in
let avg = float_of_int hs.num_bindings /. float_of_int hs.num_buckets in
out oc "%#d bindings, %#d buckets, %.2f bindings/bucket, max %#d\n"
hs.num_bindings hs.num_buckets avg hs.max_bucket_length;
let histo = hs.bucket_histogram in
out oc "buckets with 0 bindings: %#d (%d%% of buckets)\n"
histo.(0) (percent histo.(0) hs.num_buckets);
out oc "| bindings | buckets | %% | cumulated | %% bindings |\n";
out oc "|----------|---------|-------|-----------|-------------|\n";
let sum = ref 0 in
for i = 1 to min 10 hs.max_bucket_length do
let n = i * histo.(i) in
sum := !sum + n;
out oc "| %8d | %#7d | %3d%% | %#9d | %2d%% |\n"
i histo.(i) (percent n hs.num_bindings)
!sum (percent !sum hs.num_bindings)
done
;;
(****************************************************************************)
(* Sharing of strings. *)
(****************************************************************************)
module StrHash = struct
type t = string
let equal x1 x2 = x1 == x2 || x1 = x2
let hash x = Hashtbl.hash x
end;;
module StrHashtbl = Hashtbl.Make(StrHash);;
let htbl_string : string StrHashtbl.t = StrHashtbl.create 10_000;;
let share_string x =
try StrHashtbl.find htbl_string x
with Not_found -> StrHashtbl.add htbl_string x x; x;;
(****************************************************************************)
(* Sharing of types when building canonical types. *)
(****************************************************************************)
module TypHash = struct
type t = hol_type
let equal x1 x2 =
x1 == x2 ||
match x1, x2 with
| Tyvar s1, Tyvar s2 -> s1 == s2
| Tyapp(s1,bs1), Tyapp(s2,bs2) -> s1 == s2 && List.for_all2 (==) bs1 bs2
| _ -> false
let hash x = Hashtbl.hash x
end;;
module TypHashtbl = Hashtbl.Make(TypHash);;
let htbl_type : hol_type TypHashtbl.t = TypHashtbl.create 100_000;;
let share_type x =
try TypHashtbl.find htbl_type x
with Not_found -> TypHashtbl.add htbl_type x x; x;;
let hmk_vartype s = share_type (Tyvar(share_string s));;
let hmk_tyapp(s,bs) = share_type (Tyapp(share_string s,bs));;
let rec htype = function
| Tyvar s -> hmk_vartype s
| Tyapp(s,bs) -> hmk_tyapp(s, List.map htype bs);;
(****************************************************************************)
(* Sharing of terms when building canonical terms. *)
(****************************************************************************)
module TrmHash = struct
type t = term
let equal x1 x2 =
x1 == x2 ||
match x1,x2 with
| Var(s1,b1), Var(s2,b2)
| Const(s1,b1), Const(s2,b2) -> s1 == s2 && b1 == b2
| Comb(t1,u1), Comb(t2,u2)
| Abs(t1,u1), Abs(t2,u2) -> t1 == t2 && u1 == u2
| _ -> false
let hash x = Hashtbl.hash x
end;;
module TrmHashtbl = Hashtbl.Make(TrmHash);;
let htbl_term : term TrmHashtbl.t = TrmHashtbl.create 1_000_000;;
let share_term x =
try TrmHashtbl.find htbl_term x
with Not_found -> TrmHashtbl.add htbl_term x x; x;;
let hmk_var(s,b) = share_term (Var(share_string s, htype b));;
let hmk_const(s,b) = share_term (Const(share_string s, htype b));;
let hmk_comb(t,u) = share_term (Comb(t,u));;
let hmk_abs(t,u) = share_term (Abs(t,u));;
(****************************************************************************)
(* Functions on types. *)
(****************************************************************************)
let is_var_or_cst_type = function Tyvar _ | Tyapp(_,[]) -> true | _ -> false;;
(* Printing function for debug. *)
let rec otyp oc b =
match b with
| Tyvar n -> out oc "(Tyvar %s)" n
| Tyapp(n,bs) -> out oc "Tyapp(%s,%a)" n (olist otyp) bs
;;
(* Sets and maps on types. *)
module OrdTyp = struct type t = hol_type let compare = compare end;;
module SetTyp = Set.Make(OrdTyp);;
module MapTyp = Map.Make(OrdTyp);;
(* It is important for the export that list of type variables and term
free variables are always ordered and have no duplicate. *)
(* [tyvarsl bs] returns the ordered list with no duplicate of type
variables occurring in the list of types [bs]. *)
let tyvarsl bs =
List.sort_uniq compare
(List.fold_left (fun l b -> tyvars b @ l) [] bs)
;;
(* Redefinition of [tyvars] so that the output is sorted and has no
duplicate. *)
let tyvars b = List.sort_uniq compare (tyvars b);;
(* [missing_as_bool tvs b] replaces in [b] every type variable not in
[tvs]. *)
let missing_as_bool tvs =
let rec aux b =
match b with
| Tyvar _ -> if List.mem b tvs then b else bool_ty
| Tyapp(n,bs) -> mk_type(n, List.map aux bs)
in aux
;;
(* [type_var i tv] returns [v, tv] where [v] is the type variable of
name ["a" ^ string_of_int i]. *)
let type_var =
let va = Array.init 20 (fun i -> hmk_vartype ("a" ^ string_of_int i)) in
fun i tv ->
let v =
if i < Array.length va then va.(i)
else (log "a_max = %d\n%!" i; hmk_vartype ("a" ^ string_of_int i))
in v, tv
;;
(*
(* Without sharing, [canonical_typ b] returns the type variables of
[b] together with a type alpha-equivalent to [b] such that, for any
type [b'] alpha-equivalent to [b], [canonical_typ b' =
canonical_typ b]. *)
let canonical_typ b =
let tvs = tyvars b in tvs, type_subst (List.mapi type_var tvs) b
;;
*)
(* With sharing, [canonical_typ b] returns the type variables of [b]
and a type similar to [b] except that type variables are replaced
by the canonical type variables [a0, a1, ...]. *)
let canonical_typ =
let rec type_subst s b =
match b with
| Tyapp(c,bs) -> hmk_tyapp (c, List.map (type_subst s) bs)
| _ -> Lib.rev_assocd b s b
in
fun b ->
let tvs = tyvars b in tvs, type_subst (List.mapi type_var tvs) b
;;
(* Subterm positions in types are represented as list of natural numbers. *)
(* [subtyp b p] returns the type at position [p] in the type [b]. *)
let rec subtyp b p =
match b, p with
| _, [] -> b
| Tyapp(_, bs), p::ps -> subtyp (List.nth bs p) ps
| _ -> invalid_arg "subtyp"
;;
(* [typ_vars_pos b] returns an association list mapping every type
variable occurrence to its posiion in [b]. *)
let typ_vars_pos b =
let rec aux acc l =
match l with
| [] -> acc
| (Tyvar n, p)::l -> aux ((n, List.rev p)::acc) l
| (Tyapp(_,bs), p)::l ->
aux acc
(let k = ref (-1) in
List.fold_left
(fun l b -> incr k; (b,!k::p)::l)
l bs)
in aux [] [b,[]]
;;
(* test:
typ_vars_pos
(mk_type("fun",[mk_vartype"a"
;mk_type("fun",[mk_vartype"a";mk_vartype"b"])]));;*)
(* [get_domain ty] returns the domain of [ty], assuming that [ty] is
of the form [Tyapp("fun",_)]. *)
let get_domain ty =
match ty with
| Tyapp("fun",[b;_]) -> b
| _ -> invalid_arg "get_domain"
;;
(* [arity b] returns the number of arguments a term of type [b] can take. *)
let arity =
let rec arity acc b =
match b with
| Tyapp("fun",[_;b]) -> arity (1+acc) b
| _ -> acc
in arity 0
;;
(* [size_type b] computes the tree size of a type [b]. *)
let rec size_type = function
| Tyvar _ -> 1
| Tyapp(_,bs) -> add_size_types 1 bs
and add_size_types acc bs =
List.fold_left (fun acc b -> acc + size_type b) acc bs;;
(****************************************************************************)
(* Functions on terms. *)
(****************************************************************************)
let is_var_or_cst_term = function Var _ | Const _ -> true | _ -> false;;
(* [get_vartype t] returns the type of [t] assuming that [t] is a variable. *)
let get_vartype = function Var(_,b) -> b | _ -> assert false;;
(* [nb_cons t] computes the number of term constructors in the term [t]. *)
let rec nb_cons = function
| Var _ | Const _ -> 1
| Comb(u,v) | Abs(u,v) -> 1 + nb_cons u + nb_cons v
;;
(* [size_term t] computes the tree size of the term [t]. *)
let rec size_term = function
| Var (_,b) | Const(_,b) -> 1 + size_type b
| Comb(u,v) | Abs(u,v) -> 1 + size_term u + size_term v
;;
(* Printing function for debug. *)
let rec oterm oc t =
match t with
| Var(n,b) -> out oc "Var(%s,%a)" n otyp b
| Const(n,b) -> out oc "Const(%s,%a)" n otyp b
| Comb(u,v) -> out oc "Comb(%a,%a)" oterm u oterm v
| Abs(u,v) -> out oc "Abs(%a,%a)" oterm u oterm v
;;
let ovar oc = function Var(n,_) -> string oc n | _ -> assert false;;
(* Sets and maps on terms. *)
module OrdTrm = struct type t = term let compare = compare end;;
module MapTrm = Map.Make(OrdTrm);;
module SetTrm = Set.Make(OrdTrm);;
let ormap oc m = MapTrm.iter (fun t n -> out oc "(%a,%s)" oterm t n) m;;
(* [head_args t] returns the pair [h,ts] such that [t] is the
application of [h] to [ts] and [h] is not a [Comb]. *)
let head_args =
let rec aux acc t =
match t with
| Comb(t1,t2) -> aux (t2::acc) t1
| _ -> t, acc
in aux []
;;
(* [binop_args t] returns the terms [u,v] assuming that [t] is of the
form [Comb(Comb(_,u),v)]. *)
let binop_args t =
match t with
| Comb(Comb(_,u),v) -> u,v
| _ -> assert false
;;
(* [index t ts] returns the position (counting from 0) of the first
element of [ts] alpha-equivalent to [t]. Raises Not_found if there
is no such term. *)
let index t =
try pos_first (fun u -> alphaorder t u = 0)
with Not_found -> assert false;;
(* [vsubstl s ts] applies the substitution [s] to each term of [ts]. *)
let vsubstl s ts = if s = [] then ts else List.map (vsubst s) ts;;
(* [type_vars_in_terms ts] returns an un ordered list possibly with
duplicate of type variables occurring in the list of terms [ts]. *)
let type_vars_in_terms ts =
List.fold_left (fun l t -> type_vars_in_term t @ l) [] ts
;;
(* [type_vars_in_terms th] returns an unordered list possibly with
duplicate of type variables occurring in the theorem [th]. *)
let type_vars_in_thm thm =
let ts,t = dest_thm thm in type_vars_in_terms (t::ts);;
;;
(* [extra_type_vars_in_proof_content p] returns possible extra type
variables occurring in the proof content [pc]. *)
let extra_type_vars_in_proof_content proof_at pc =
match pc with
| Ptrans(i,_)
| Peqmp(_,i)
| Pmp(_,i)
| Pchoose(_,_,i)
| Pdisj_cases(i,_,_) ->
let Proof(thm,_) = proof_at i in type_vars_in_thm thm
| Pexists(_,t,_) -> type_vars_in_term t
| _ -> []
;;
(* [type_vars_in_proof proof_at p] returns the ordered list with no
duplicate of type variables occurring in the proof [p]. *)
let type_vars_in_proof proof_at p =
let Proof(thm,pc) = p in
List.sort_uniq compare
(extra_type_vars_in_proof_content proof_at pc @ type_vars_in_thm thm)
;;
(* Redefinition of [type_vars_in_term] so that the output is sorted
and has no duplicate. *)
let type_vars_in_term t = List.sort_uniq compare (type_vars_in_term t);;
(* Redefinition of [type_vars_in_terms] so that the output is sorted
and has no duplicate. *)
let type_vars_in_terms ts = List.sort_uniq compare (type_vars_in_terms ts);;
(* Redefinition of [type_vars_in_thm] so that the output is sorted
and has no duplicat. *)
let type_vars_in_thm thm = List.sort_uniq compare (type_vars_in_thm thm);;
(* [vars_terms ts] returns the ordered list with no duplicate of all
the term variables (including bound variables) occurring in the
terms [ts] *)
let vars_terms =
let rec vars_term t =
match t with
| Const _ -> []
| Var _ -> [t]
| Abs(t,u) -> t :: vars_term u
| Comb(t,u) -> vars_term t @ vars_term u
in
fun ts ->
List.sort_uniq compare
(List.fold_left (fun vs t -> vs @ vars_term t) [] ts);;
(* Reserved names not to be used as variable names. *)
let reserved : SetStr.t ref = ref SetStr.empty;;
let update_reserved =
let add_name s (n,_) = SetStr.add n s in
fun () ->
reserved :=
let s = List.fold_left add_name SetStr.empty !the_type_constants in
List.fold_left add_name s !the_term_constants
;;
(* [rename_var rmap v] returns a variable with the same type as the one
of [v] but with a name not occuring in the codomain of [rmap]. *)
let rename_var rmap =
let rec rename v =
match v with
| Var(n,b) ->
if SetStr.mem n !reserved
|| let k = String.length n in
(k > 1 && n.[0] = 'h' && n.[k-1] <> '\'')
(* the last condition is important to avoid looping *)
|| List.exists (fun (_,s) -> s = n) rmap
then rename (mk_var(n^"'",b))
else v
| _ -> assert false
in rename
;;
(* [add_var rmap v] returns a map extending [rmap] with a mapping from
[v] to a name not occurring in the codomain of [rmap]. *)
let add_var rmap v =
match rename_var rmap v with
| Var(n,_) -> (v,n)::rmap
| _ -> assert false
;;
(* [renaming_map tvs vs] returns an association list giving names to
the term variables in [vs] that are distinct to one another and
distinct from the type variables in [tvs]. This is needed to
include type variables because HOL-Light may have type variables and
term variables with the same name. *)
let renaming_map =
let tyvar = function Tyvar n -> mk_var(n,bool_ty),n | _ -> assert false in
fun tvs vs -> List.fold_left add_var (List.map tyvar tvs) vs;;
(* Add a new HOL-Light constant "el" that could be defined as:
let el b =
mk_comb(mk_const("@",[b,aty]),mk_abs(mk_var("_",b),mk_const("T",[])))
*)
(*if not(!el_added) then (new_constant("el",aty); el_added := true);;*)
let mk_el b = mk_const("el",[b,aty]);;
(****************************************************************************)
(* Canonical term for alpha-equivalence without sharing. *)
(****************************************************************************)
(* [term_var i v] returns [v,v'] where [v'] is a variable of name ["x"
^ string_of_int i] with the same type as [v]. *)
let term_var =
let sx = Array.init 50 (fun i -> "x" ^ string_of_int i) in
fun i v ->
match v with
| Var(_,b) ->
let s =
if i < Array.length sx then sx.(i)
else (log "x_max = %d\n%!" i; "x" ^ string_of_int i)
in v, hmk_var(s,b)
| _ -> assert false
;;
(*
(* [canonical_term t] returns the free type and term variables of [t]
together with a term alpha-equivalent to [t] so that
[canonical_term t = canonical_term u] if [t] and [u] are
alpha-equivalent. *)
let canonical_term =
(*let a_max = ref 0 and x_max = ref 0 and y_max = ref 0 in*)
let sy = Array.init 50 (fun i -> "y" ^ string_of_int i) in
(* [subst i su t] applies [su] on [t] and rename abstracted
variables as well by incrementing the integer [i]. *)
let rec subst i su t =
(*log "subst %d %a %a\n%!" i (olist (opair oterm oterm)) su oterm t;*)
match t with
| Var _ -> (try List.assoc t su with Not_found -> assert false)
| Const _ -> t
| Comb(u,v) -> mk_comb(subst i su u, subst i su v)
| Abs(u,v) ->
match u with
| Var(_,b) ->
let s =
if i < Array.length sy then sy.(i)
else (log "y_max = %d\n%!" i; "y" ^ string_of_int i)
in
let u' = mk_var(s,b) in
mk_abs(u', subst (i+1) ((u,u')::su) v)
| _ -> assert false
in
fun t ->
let tvs = type_vars_in_term t and vs = frees t in
let su = List.mapi type_var tvs in
let t' = inst su t and vs' = List.map (inst su) vs in
let bs = List.map get_vartype vs' and su' = List.mapi term_var vs' in
tvs, vs, bs, subst 0 su' t'
;;
*)
(****************************************************************************)
(* Canonical term for alpha-equivalence with sharing. *)
(****************************************************************************)
(* [canonical_term t] returns [tvs,vs,bs,u,n] where:
- [tvs] are the type variables of [t],
- [vs] are the free term variables of [t],
- [bs] are the types of [vs],
- [u] is a term similar to [t] except that [tvs] are replaced by
canonical type variables [a0, a1, ...], [vs] are replaced by
canonical term variables [x0, x1, ...], and the abstracted term
variables are replaced by canonical variables [y0, y1, ...]. Hence,
if [t'] is alpha-equivalent to [t], then [canonical_term t' = u]. *)
let canonical_term
: term -> hol_type list * term list * hol_type list * term =
(*let a_max = ref 0 and x_max = ref 0 and y_max = ref 0 in*)
let sy = Array.init 50 (fun i -> "y" ^ string_of_int i) in
(* [subst i su t] applies [su] on [t] and rename abstracted
variables as well by incrementing the integer [i]. [su] is a term
substitution mapping term variables abstracted in [t] by the
canonical term variables [y0, y1, ...]. *)
let rec subst i su t =
(*log "subst %d %a %a\n%!" i (olist (opair oterm oterm)) su oterm t;*)
match t with
| Var _ -> (try List.assoc t su with Not_found -> assert false)
| Const(s,b) -> hmk_const(s,b)
| Comb(u,v) -> hmk_comb(subst i su u, subst i su v)
| Abs(u,v) ->
match u with
| Var(_,b) ->
let s =
if i < Array.length sy then sy.(i)
else (log "y_max = %d\n%!" i; "y" ^ string_of_int i)
in
let u' = hmk_var(s,b) in
hmk_abs(u', subst (i+1) ((u,u')::su) v)
| _ -> assert false
in
fun t ->
let tvs = type_vars_in_term t and vs = frees t in
(* Type substitution mapping type variables of [t] to the canonical
type variables [a0, a1, ...]. *)
let su = List.mapi type_var tvs in
let t' = inst su t and vs' = List.map (inst su) vs in
let bs = List.map get_vartype vs'
(* Term substitution mapping term variables of [t] to the canonical
term variables [x0, x1, ...]. *)
and su' = List.mapi term_var vs' in
tvs, vs, bs, subst 0 su' t'
;;
(****************************************************************************)
(* Functions on proofs. *)
(****************************************************************************)
(* [size_content nb_type_vars nb_term_vars content] computes an
approximation of the tree size of the Dedukti representation of the
proof [content]. *)
let size_content nb_type_vars nb_term_vars nb_hyps c =
let typ = 1 + 2*nb_type_vars in
let trm = typ + 2*nb_term_vars in
let prf = trm + 2*nb_hyps in
let step(nb_types,nb_terms,nb_proofs) =
1 + nb_types*(1+typ) + nb_terms*(1+trm) + nb_proofs*(1+prf) in
match c with
| Prefl _ -> step(1,1,0)
| Psym _ -> step(1,2,1)
| Ptrans _ -> step(1,3,2)
| Pmkcomb _ -> step(2,4,2)
| Pabs _ -> step(3,2,1)
| Pbeta _ -> step(1,1,0)
| Passume _ -> 1
| Peqmp _ -> step(0,2,2)
| Pdeduct _ -> step(0,4,2)
| Pinst(_,s) -> let n = List.length s in step(n,n,1)
| Pinstt(_,s) -> let n = List.length s in step(n,n,1)
| Paxiom _ -> step(1,1,0)
| Pdef _ -> step(1,1,0)
| Pdeft _ -> step(1,1,0)
| Ptruth -> 1
| Pconj _ -> step(0,2,2)
| Pconjunct1 _ -> step(0,2,2)
| Pconjunct2 _ -> step(0,2,2)
| Pmp _ -> step(0,0,2)
| Pdisch _ -> step(0,1,1)
| Pspec _ -> step(0,1,1)
| Pgen _ -> step(1,0,1)
| Pexists _ -> step(1,2,1)
| Pdisj1 _ -> step(0,2,1)
| Pdisj2 _ -> step(0,2,1)
| Pdisj_cases _ -> step(0,5,3)
| Pchoose _ -> step(3,3,2)
;;
(* [size_proof p] computes an approximation of the tree size of the
Dedukti representation of the proof [p]. *)
let size_proof (Proof(thm, content)) =
let (ts,t) = dest_thm thm in
let nb_type_vars = List.length (type_vars_in_thm thm)
and nb_term_vars = List.length (Fusion.freesl (t::ts))
and nb_hyps = List.length ts in
let typ = 1 + 2*nb_type_vars in
let trm = typ + 2*nb_term_vars in
1 + 2*nb_type_vars + 2*nb_term_vars*typ + 2*nb_hyps*trm
+ size_content nb_type_vars nb_term_vars nb_hyps content
;;
(* [size_abbrev a] computes an approximation of the tree size of the
Dedukti representation of the term abbreviation [a]. *)
let size_abbrev (t,(_,ltvs,bs)) =
let nb_type_vars = ltvs in
let nb_term_vars = List.length bs in
let typ = 1 + 2*ltvs in
1 + 2*nb_type_vars + 2*nb_term_vars*typ + size_term t
;;
(* [proof oc p] prints the proof [p] on out_channel [oc] in a user
readable format. *)
let proof oc (Proof(_,c)) =
match c with
| Prefl _ -> out oc "refl"
| Ptrans(i,j) -> out oc "trans %d %d" i j
| Pmkcomb(i,j) -> out oc "mkcomb %d %d" i j
| Pabs(i,_) -> out oc "abs %d" i
| Pbeta _ -> out oc "beta"
| Passume _ -> out oc "assume"
| Peqmp(i,j) -> out oc "eqmp %d %d" i j
| Pdeduct(i,j) -> out oc "deduct %d %d" i j
| Pinst(i,_) -> out oc "inst %d" i
| Pinstt(i,_) -> out oc "inst_type %d" i
| Paxiom _ -> out oc "axiom"
| Pdef _ -> out oc "def"
| Pdeft(i,_,_,_) -> out oc "def_type %d" i
| Ptruth -> out oc "truth"
| Pconj(i,j) -> out oc "conj %d %d" i j
| Pconjunct1 i -> out oc "conjunct1 %d" i
| Pconjunct2 i -> out oc "conjunct2 %d" i
| Pmp(i,j) -> out oc "mp %d %d" i j
| Pdisch(_,i) -> out oc "disch %d" i
| Pspec(_,i) -> out oc "spec %d" i
| Pgen(_,i) -> out oc "gen %d" i
| Pexists(_,_,i) -> out oc "exists %d" i
| Pdisj1(_,i) -> out oc "disj1 %d" i
| Pdisj2(_,i) -> out oc "disj2 %d" i
| Pdisj_cases(i,j,k) -> out oc "disj_cases %d %d %d" i j k
| Pchoose(_,i,j) -> out oc "choose %d %d" i j
| Psym i -> out oc "sym %d" i
;;
(* [get_eq_typ p] returns the type [b] of the terms t and u of the
conclusion of the proof [p] assumed of the form [= t u]. *)
let get_eq_typ p =
let Proof(th,_) = p in
match concl th with
| Comb(Comb(Const((*"="*)_,b),_),_) -> get_domain b
| _ -> assert false
;;
(* [get_eq_args p] returns the terms t and u of the conclusion of the
proof [p] assumed of the form [= t u]. *)
let get_eq_args p =
let Proof(th,_) = p in
match concl th with
| Comb(Comb((*Const("=",_)*)_,t),u) -> t,u
| _ -> assert false
;;
(* [get_eq_typ_args p] returns the type of the terms t and u, and the
terms t and u, of the conclusion of the proof [p] assumed of the
form [= t u]. *)
let get_eq_typ_args p =
let Proof(th,_) = p in
match concl th with
| Comb(Comb(Const((*"="*)_,b),t),u) -> get_domain b,t,u
| _ -> assert false
;;
(* [deps p] returns the list of proof indexes the proof [p] depends on. *)
let deps (Proof(_,content)) =
match content with
| Pdisj_cases(k1,k2,k3) -> [k1;k2;k3]
| Ptrans(k1,k2) | Pmkcomb(k1,k2) | Peqmp(k1,k2) | Pdeduct(k1,k2)
| Pconj(k1,k2) | Pmp(k1,k2) | Pchoose(_,k1,k2)
-> [k1;k2]
| Pabs(k,_) | Pinst(k,_) | Pinstt(k,_)| Pdeft(k,_,_,_)
| Pconjunct1 k | Pconjunct2 k | Pdisch(_,k) | Pspec(_,k) | Pgen(_,k)
| Pexists(_,_,k) | Pdisj1(_,k) | Pdisj2(_,k) | Psym k
-> [k]
| Prefl _ | Pbeta _ | Passume _ | Paxiom _ | Pdef _ | Ptruth
-> []
;;
(* [count_thm_uses a p] increments by 1 every [a.(i)] such that [i] is
a dependence of [p]. *)
let count_thm_uses (a : int array) (p : proof) : unit =
List.iter (fun k -> Array.set a k (Array.get a k + 1)) (deps p)
;;
(* [print_histogram a] prints on stdout the number of elements of [a]
that are used [i] times, for each [i] from 0 to the maximum of
[a]. *)
let print_histogram (a : int array) : unit =
(* compute max and argmax *)
let max = ref (-1) and argmax = ref (-1) and unused = ref (-1) in
let f k n =
if n > !max then (max := n; argmax := k);
if n = 0 then unused := k
in
Array.iteri f a;
let hist = Array.make (!max + 1) 0 in
Array.iter (fun n -> Array.set hist n (Array.get hist n + 1)) a;
log "(* \"i: n\" means that n proofs are used i times *)\n";
let nonzeros = ref 0 in
Array.iteri
(fun i n -> if n > 0 then (incr nonzeros; log "%d: %d\n" i n)) hist;
log "number of mappings: %d\n" !nonzeros;
log "most used theorem: %d\n" !argmax;
log "unused theorems (including named theorems): %d (%d%%)\n"
hist.(0) ((100 * hist.(0)) / Array.length a);
log "last unused theorem: %d\n" !unused
;;
(* [code_of_proof p] maps every Proof constructor to a unique integer. *)
let code_of_proof (Proof(_,c)) =
match c with
| Prefl _ -> 0
| Ptrans _ -> 1
| Pmkcomb _ -> 2
| Pabs _ -> 3
| Pbeta _ -> 4
| Passume _ -> 5
| Peqmp _ -> 6
| Pdeduct _ -> 7
| Pinst _ -> 8
| Pinstt _ -> 9
| Paxiom _ -> 10
| Pdef _ -> 11
| Pdeft _ -> 12
| Ptruth -> 13
| Pconj _ -> 14
| Pconjunct1 _ -> 15
| Pconjunct2 _ -> 16
| Pmp _ -> 17
| Pdisch _ -> 18
| Pspec _ -> 19
| Pgen _ -> 20
| Pexists _ -> 21
| Pdisj1 _ -> 22
| Pdisj2 _ -> 23
| Pdisj_cases _ -> 24
| Pchoose _ -> 25
| Psym _ -> 26
;;
(* [name_of_code k] maps every integer k in the image of
[code_of_proof] to a unique string. *)
let name_of_code = function
| 0 -> "refl"
| 1 -> "trans"
| 2 -> "comb"
| 3 -> "abs"
| 4 -> "beta"
| 5 -> "assume"
| 6 -> "eqmp"
| 7 -> "deduct"
| 8 -> "term_subst"
| 9 -> "type_subst"
| 10 -> "axiom"
| 11 -> "sym_def"
| 12 -> "type_def"
| 13 -> "truth"
| 14 -> "conj"
| 15 -> "conjunct1"
| 16 -> "conjunct2"
| 17 -> "mp"
| 18 -> "disch"
| 19 -> "spec"
| 20 -> "gen"
| 21 -> "exists"
| 22 -> "disj1"
| 23 -> "disj2"
| 24 -> "disj_cases"
| 25 -> "choose"
| 26 -> "sym"
| _ -> assert false
;;