-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patharith.ml
684 lines (594 loc) · 21.6 KB
/
arith.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
(* Copyright 2014 INRIA *)
open Expr
open Mlproof
let equal = Expr.equal
let type_int = eapp (tvar "Z" type_type, [])
let type_rat = eapp (tvar "Q" type_type, [])
let type_real = eapp (tvar "R" type_type, [])
(* String to rational conversion *)
let of_string s =
let rec aux s decimal pos acc =
if pos >= 0 && pos < String.length s then begin
match s.[pos] with
| '0' .. '9' as c ->
let n = Q.of_string (String.make 1 c) in
if decimal <= 0 then
aux s decimal (pos + 1) Q.(acc * (of_int 10) + n)
else
aux s (decimal + 1) (pos + 1)
Q.(acc + n / of_bigint Z.(pow (of_int 10) decimal))
| '/' ->
if decimal <= 0 then
Q.div acc (aux s 0 (pos + 1) Q.zero)
else
raise (Invalid_argument s)
| '.' -> aux s 1 (pos + 1) acc
| _ -> raise (Invalid_argument s)
end else
acc
in
match String.length s with
| 0 -> raise (Invalid_argument s)
| 1 -> aux s 0 0 Q.zero
| _ -> begin match s.[0] with
| '-' -> Q.neg (aux s 0 1 Q.zero)
| _ -> aux s 0 0 Q.zero
end
(* Exprs manipulation *)
let mk_int v = eapp (tvar v type_int, [])
let mk_rat v = eapp (tvar v type_rat, [])
let mk_real v = eapp (tvar v type_real, [])
let is_num_string s = try ignore (of_string s); true with Invalid_argument _ -> false
let is_int e = Expr.equal type_int (Expr.get_type e)
let is_rat e = Expr.equal type_rat (Expr.get_type e)
let is_real e = Expr.equal type_real (Expr.get_type e)
let is_type_num t = List.exists (Expr.equal t) [type_int; type_rat; type_real]
let is_num e = is_type_num (Expr.get_type e)
(* We assume t a t' are numeric types *)
let mix_type t t' =
assert (is_type_num t && is_type_num t');
match (Expr.equal type_real t), (Expr.equal type_real t') with
| true, _
| _, true -> type_real
| false, false ->
begin match (Expr.equal type_rat t), (Expr.equal type_rat t') with
| true, _
| _, true -> type_rat
| false, false -> type_int
end
(* Manipulation of expressions/formulas *)
exception NotaFormula
let is_z v = Z.equal (Q.den v) Z.one
let is_q v = not (Z.equal (Q.den v) Z.zero || is_z v)
let floor v =
try
Q.of_bigint (Z.ediv (Q.num v) (Q.den v))
with Division_by_zero -> v
let ceil v = Q.neg (floor (Q.neg v))
let comp_neg = function
| "$less" -> "$greatereq"
| "$lesseq" -> "$greater"
| "$greater" -> "$lesseq"
| "$greatereq" -> "$less"
| "$is_int" -> "$not_is_int"
| "$is_rat" -> "$not_is_rat"
| _ -> assert false
(* Combine types *)
let const s = if is_z (of_string s) then mk_int s else mk_rat s
let mk_op s a b =
let ta = Expr.get_type a in
let tb = Expr.get_type b in
eapp (tvar s (Expr.earrow [ta; tb] (mix_type ta tb)), [a; b])
let sum a b = mk_op "$sum" a b
let diff a b = mk_op "$difference" a b
let mul a b = mk_op "$product" a b
let minus_one e = diff e (const "1")
let plus_one e = sum e (const "1")
let mk_uop s a =
let t = Expr.get_type a in
eapp (tvar s (Expr.earrow [t] t), [a])
let uminus a = mk_uop "$uminus" a
let mk_bop s a b =
let ta = Expr.get_type a in
let tb = Expr.get_type b in
eapp (tvar s (Expr.earrow [ta; tb] Expr.type_prop), [a; b])
let less a b = mk_bop "$less" a b
let lesseq a b = mk_bop "$lesseq" a b
let greater a b = mk_bop "$greater" a b
let greatereq a b = mk_bop "$greatereq" a b
let arith_eq a b = mk_bop "=" a b
(* Possibly unsafe... *)
let rec coerce t = function
| Evar(_, _) as v -> v
| Eapp(Evar(s, _), [], _) as c ->
let aux =
if Expr.equal type_int t then mk_int
else if Expr.equal type_rat t then mk_rat
else if Expr.equal type_real t then mk_real
else (fun _ -> assert false)
in
begin try
aux (Q.to_string (of_string s))
with Invalid_argument _ -> c
end
| Eapp (Evar("$uminus",_), [a], _) -> uminus (coerce t a)
| Eapp (Evar("$sum",_), [a; b], _) -> sum (coerce t a) (coerce t b)
| Eapp (Evar("$difference",_), [a; b], _) -> diff (coerce t a) (coerce t b)
| Eapp (Evar("$product",_), [a; b], _) -> mul (coerce t a) (coerce t b)
| e -> e
let mk_ubop s a =
let t = Expr.get_type a in
eapp (tvar s (Expr.earrow [t] Expr.type_prop), [a])
let rec find_coef x = function
| [] -> raise Not_found
| (c, y) :: r -> if equal x y then c else find_coef x r
let rec fadd_aux (c, x) = function
| [] -> [(c, x)]
| (c', y) :: r ->
if equal x y then
(Q.add c c', x) :: r
else
(c', y) :: (fadd_aux (c, x) r)
let fadd a b = List.fold_left (fun e c -> fadd_aux c e) a b
let fdiff a b = fadd a (List.map (fun (c, x) -> (Q.neg c, x)) b)
let fmul c a = List.map (fun (c', x) -> (Q.mul c c', x)) a
let fis_int = List.for_all (fun (_, e) -> is_int e)
let fis_tau = List.for_all (fun (_, e) -> match e with Emeta(_) -> false | _ -> true)
let fis_meta = List.for_all (fun (_, e) -> match e with Emeta(_) -> true | _ -> false)
let fneg (b, s, c) =
let s = comp_neg s in
if not (fis_int b) then
(b, s, c)
else begin match s with
| "$less" -> (b, "$lesseq", Q.sub c Q.one)
| "$greater" -> (b, "$greatereq", Q.add c Q.one)
| _ -> (b, s, c)
end
let rec sanitize = function
| [] -> []
| (c, _) as a :: r -> if Q.equal Q.zero c then (sanitize r) else a :: (sanitize r)
let rec fpop x = function
| [] -> (Q.zero, [])
| (c, y) :: r ->
if equal x y then
(Q.neg c), r
else
let c', r' = fpop x r in
c', (c, y) :: r'
let fsep l x =
let c, r = fpop x l in
Q.neg c, fmul (Q.inv c) r
let normalize_aux a b =
let coef e =
if e = [] then
Q.one
else
let k = Q.of_bigint (List.fold_left (fun k c -> if Q.is_real c then Z.lcm k (Q.den c) else k) Z.one e) in
let aux = (fun g c -> Z.gcd g (Q.to_bigint (Q.mul c k))) in
Q.div k (Q.of_bigint (List.fold_left aux (Q.to_bigint (Q.mul (List.hd e) k)) (List.tl e)))
in
let f = fdiff a b in
let c, e = fpop etrue f in
let e = sanitize e in
let k = Q.abs (coef (List.map fst e)) in
k, (Q.mul c k, (List.map (fun (c, x) -> (Q.mul c k, x)) e))
let normalize a b = snd (normalize_aux a b)
let of_cexpr e = match e with
| Eapp(Evar(s, _), [], _) when is_num e ->
begin try
of_string s
with Invalid_argument _ ->
raise Exit
end
| _ -> raise NotaFormula
let rec of_nexpr e = match e with
| Eapp (Evar(_, _), [], _) -> begin try [of_cexpr e, etrue] with Exit -> [Q.one, e] end
| Eapp (Evar("$uminus",_), [a], _) -> fdiff [Q.zero, etrue] (of_nexpr a)
| Eapp (Evar("$sum",_), [a; b], _) -> fadd (of_nexpr a) (of_nexpr b)
| Eapp (Evar("$difference",_), [a; b], _) -> fdiff (of_nexpr a) (of_nexpr b)
| Eapp (Evar("$product",_), [a; b], _) ->
begin match (of_nexpr a, of_nexpr b) with
| [k, Etrue], f | f, [k, Etrue] ->
fmul k f
| _ -> raise NotaFormula
end
| _ -> [Q.one, e]
let of_bexpr_aux = function
| Eapp (Evar(("$less"|"$lesseq"|"$greater"|"$greatereq") as s,_), [a; b], _ ) ->
let a', b' = of_nexpr a, of_nexpr b in
let k, (c, e) = normalize_aux a' b' in
k, (e, s, c)
| Eapp (Evar("=",_), [a; b], _ ) when is_num a && is_num b ->
let a', b' = of_nexpr a, of_nexpr b in
let k, (c, e) = normalize_aux a' b' in
k, (e, "=", c)
| Eapp (Evar(("$is_int"|"$is_rat"|"$not_is_int"|"$not_is_rat") as s,_), [a], _) ->
let a' = of_nexpr a in
let k, (c, e) = normalize_aux [Q.zero, etrue] a' in
k, (e, s, c)
| _ -> raise NotaFormula
let of_bexpr e = snd (of_bexpr_aux e)
let is_bexpr e = try ignore (of_bexpr e); true with NotaFormula -> false
let norm_coef e = const (Q.to_string (fst (of_bexpr_aux e)))
let to_nexpr_aux (c, x) =
if x == etrue then const (Q.to_string c) else
(if Q.equal Q.one c then x else mul (const (Q.to_string c)) x)
let to_nexpr = function
| [] -> const "0"
| (c, x) :: r -> List.fold_left
(fun e (c', x') -> if Q.sign c' < 0 then diff e (to_nexpr_aux (Q.neg c', x')) else sum e (to_nexpr_aux (c', x')))
(if Q.sign c < 0 then uminus (to_nexpr_aux (Q.neg c, x)) else to_nexpr_aux (c, x)) r
let to_bexpr (e, s, c) = mk_bop s (to_nexpr e) (const (Q.to_string c))
let expr_norm e = try to_bexpr (of_bexpr e) with NotaFormula -> e
let is_rexpr = function
| e when is_real e -> true
| Eapp (_, l, _) -> List.exists is_real l
| _ -> false
(* Coq translation *)
let mk_coq_q p q =
let div = tvar "$coq_div" (Expr.earrow [type_int; type_int] type_rat) in
eapp (div, [p; q])
let coq_const c = mk_coq_q (const (Z.to_string (Q.num c))) (const (Z.to_string (Q.den c)))
(*let coq_var x =
if is_int x then
mk_coq_q x (const "1")
else
x*)
let type_scope = tvar "#coq_scope" Expr.type_type
let coq_scope s e =
let t = Expr.get_type e in
let scope = tvar "$coq_scope" (Expr.earrow [type_scope; t] t) in
eapp (scope, [tvar s type_scope; e])
let z_scope = coq_scope "Z"
let q_scope = coq_scope "Q"
let r_scope = coq_scope "R"
let rec coqify_real e = match e with
| Evar(s, _) ->
begin try
tvar (Q.to_string (of_string s)) (Expr.get_type e)
with Exit | Invalid_argument _ ->
e
end
| Eapp (f, l, _) ->
eapp (coqify_real f, List.map coqify_real l)
| Enot (e', _) -> enot (coqify_real e')
| Eand (e1, e2, _) -> eand (coqify_real e1, coqify_real e2)
| Eor (e1, e2, _) -> eor (coqify_real e1, coqify_real e2)
| Eimply (e1, e2, _) -> eimply (coqify_real e1, coqify_real e2)
| Eequiv (e1, e2, _) -> eequiv (coqify_real e1, coqify_real e2)
| Eall (v, e', _) -> eall (v, coqify_real e')
| Eex (v, e', _) -> eex (v, coqify_real e')
| Elam (v, e', _) -> elam (v, coqify_real e')
| _ -> e
let rec coqify_aux b e =
let aux = if b then coqify_to_q else coqify_term in
match e with
| Evar(_)
| Etau(_)
| Emeta(_) when is_int e ->
if b then mk_coq_q e (const "1") else e
| Evar(v, _) when is_rat e ->
begin try coq_const (of_string v) with Invalid_argument _ -> e end
| Eapp (Evar(_,_) as e', [], _) -> coqify_aux b e'
| Eapp (Evar("$uminus",_), [a], _) -> uminus (aux a)
| Eapp (Evar("$sum",_), [a; b], _) -> sum (aux a) (aux b)
| Eapp (Evar("$difference",_), [a; b], _) -> diff (aux a) (aux b)
| Eapp (Evar("$product",_), [a; b], _) -> mul (aux a) (aux b)
| Eapp (f, l, _) ->
let e' = eapp (f, List.map coqify_term l) in
if b && is_int e then mk_coq_q e' (const "1") else e'
| _ -> e
and coqify_term e =
if is_int e then
z_scope (coqify_aux false e)
else if is_rat e then
q_scope (coqify_aux true e)
else if is_real e then
r_scope (coqify_real e)
else
coqify_aux true e
and coqify_to_q e =
if is_int e then
mk_coq_q (coqify_term e) (const "1")
else
coqify_term e
and coqify_to_r e =
r_scope (coqify_real e)
and coqify_prop e = match e with
| Eapp (Evar("=",_), [a; b], _ ) when is_real a || is_real b ->
mk_bop "=" (coqify_to_r a) (coqify_to_r b)
| Eapp (Evar("=",_), [a; b], _ ) when is_rat a || is_rat b ->
mk_bop "==" (coqify_to_q a) (coqify_to_q b)
| Eapp (Evar("=",_), [a; b], _ ) when is_num a && is_num b ->
mk_bop "=" (coqify_term a) (coqify_term b)
| Eapp (Evar(("$less"|"$lesseq"|"$greater"|"$greatereq") as s,_), [a; b], _ )
when is_real a || is_real b ->
r_scope (mk_bop s (coqify_to_r a) (coqify_to_r b))
| Eapp (Evar(("$less"|"$lesseq"|"$greater"|"$greatereq") as s,_), [a; b], _ )
when is_num a && is_num b ->
q_scope (mk_bop s (coqify_to_q a) (coqify_to_q b))
| Eapp (Evar(("$is_int"|"$is_rat"|"$not_is_int"|"$not_is_rat") as s,_), [a], _) ->
mk_ubop s (coqify_term a)
| Eapp(f, l, _) -> eapp (f, List.map coqify_term l)
| Enot(f, _) -> enot (coqify_prop f)
| Eand(f, g, _) -> eand (coqify_prop f, coqify_prop g)
| Eor(f, g, _) -> eor (coqify_prop f, coqify_prop g)
| Eimply(f, g, _) -> eimply (coqify_prop f, coqify_prop g)
| Eequiv(f, g, _) -> eequiv (coqify_prop f, coqify_prop g)
| Etrue
| Efalse -> e
| Eall(v, body, _) -> eall (v, coqify_prop body)
| Eex(v, body, _) -> eex (v, coqify_prop body)
| Etau(_, _, _) -> e
| Elam(v, body, _) -> elam (v, coqify_prop body)
| _ -> coqify_term e
let coqify e =
Log.debug 15 "Coqifying term : %a ::: %a" Print.pp_expr e Print.pp_expr (get_type e);
match get_type e with
| t when Expr.equal t type_iota -> e
| t when Expr.equal type_prop t -> coqify_prop e
| Earrow _ -> coqify_prop e
| _ -> coqify_term e
(* Analog to circular lists with a 'stop' element, imperative style *)
exception EndReached
type 'a clist = {
mutable front : 'a list;
mutable acc : 'a list;
}
let cl_is_empty l = l.front = [] && l.acc = []
(* let cl_to_list l = (List.rev l.acc) @ l.front *)
let cl_from_list l = {
front = l;
acc = []
}
let cl_current l =
if l.front = [] then
raise EndReached
else
List.hd l.front
let cl_next l =
if l.front = [] then
raise EndReached
else begin
let x = List.hd l.front in
l.front <- List.tl l.front;
l.acc <- x :: l.acc
end
let cl_to_list l = (List.rev l.acc) @ l.front
let cl_reset cl =
(* l.front *should* be empty, but just in case,.. *)
let l = cl_to_list cl in
cl.front <- l;
cl.acc <- []
(* Combinatorial tree *)
type 'a ctree = {
node : 'a clist;
children : 'a ctree array;
}
let ct_is_empty t =
Array.length t.children = 0 && cl_is_empty t.node
let collapse t =
let rec aux l t =
if Array.length t.children = 1 then
aux (l @ cl_to_list t.node) t.children.(0)
else
{
node = cl_from_list (l @ cl_to_list t.node);
children = Array.map (aux []) t.children;
}
in
aux [] t
let rec reset t =
cl_reset t.node;
Array.iter reset t.children
let rec next t =
try
cl_next t.node
with EndReached ->
if Array.length t.children = 0 then
raise EndReached
else begin
let i = ref 0 in
try
while true do
if !i >= Array.length t.children then
raise EndReached;
try
next t.children.(!i);
raise Exit
with EndReached ->
reset t.children.(!i);
incr i
done
with Exit -> ()
end
let rec current t =
let rec aux t =
try
[cl_current t.node]
with EndReached ->
if Array.length t.children = 0 then
raise Exit
else
List.concat @@ Array.to_list @@ (Array.map aux t.children)
in
try
aux t
with Exit ->
next t; current t
let ct_all t =
let res = ref [] in
try
while true do
res := (current t) :: !res;
next t
done;
!res
with EndReached -> List.rev !res
let is_inst_node p = match p.mlrule with
| All (e, e') -> begin match e' with
| Emeta(e'', _) when equal e e'' -> false
| _ -> true
end
| NotEx(e, e') -> begin match e' with
| Emeta(e'',_) when equal e (enot e'') -> false
| _ -> true
end
| _ -> false
let ct_from_ml p =
let filter l = List.filter (fun e ->
try begin match of_bexpr e with
| (_, "=", _) -> false
| (f, ("$less"|"$lesseq"|"$greater"|"$greatereq"), _) ->
(List.for_all (fun (_, e) ->
(is_num e) && (match e with
| Emeta(_) -> true
| Eapp(Evar(_, _), [], _) -> false
| _ -> false)) f) &&
(List.exists (fun (_, e) -> match e with
| Emeta(_) -> true
| _ -> false) f)
| _ -> false
end with NotaFormula -> false
) l in
let rec aux l p =
(*
if is_inst_node p then
{ node = cl_from_list []; children = [| |]; }
else
*)
let l' = match p.mlrule with
| Ext("arith", "inst", x) -> x (* @ p.mlconc ? *)
| _ -> p.mlconc
in
let hyps = Array.to_list p.mlhyps in
let hyps = List.filter is_open_proof hyps in
let hyps = List.map (aux l') hyps in
let hyps = List.filter (fun t -> not (ct_is_empty t)) hyps in
let hyps = Array.of_list hyps in
{
node = cl_from_list (filter (Expr.diff p.mlconc l));
children = hyps;
}
in
let res = aux [] p in
if ct_is_empty res then
None
else
Some res
exception Found_inst of proof
let find_next_inst p =
let rec aux p =
if is_inst_node p
then raise (Found_inst p)
else Array.iter aux p.mlhyps
in
try aux p; raise EndReached with Found_inst p ->
let e, l = match p.mlrule with
| All(e, _) | NotEx(e, _) -> e, p.mlconc
| _ -> assert false
in
e, { p with mlrule = Ext("arith", "inst", l) }
let replace_inst p (e, inst) =
let rec aux p = match p.mlrule with
| All(e', _) | NotEx(e', _) when equal e e' ->
{ inst with mlconc = p.mlconc }
| _ -> { p with mlhyps = Array.map aux p.mlhyps }
in
aux p
let next_inst p = replace_inst p (find_next_inst p)
let rec treebox p =
let aux cl =
let l = cl_to_list cl in
let s = String.concat ", " (List.map Print.sexpr l) in
`Text (Log.sprintf "[%s]" s)
in
`Tree (aux p.node, Array.to_list @@ Array.map treebox p.children)
let sctree t = PrintBox.Simple.to_string (treebox t)
(* Simplex solver with a cache *)
let lhash l = List.fold_left (+) 0 (List.map Expr.hash l)
let lequal l l' = try List.for_all2 equal l l' with Invalid_argument _ -> false
module Simplex = Simplex.MakeHelp(Expr)
module ElH = Hashtbl.Make(struct type t = Expr.t list let hash = lhash let equal = lequal end)
let pp_simplex b s =
let fmt = Format.formatter_of_buffer b in
let print_var fmt = function Simplex.Extern e -> Format.fprintf fmt "%s" (Print.sexpr e) | Simplex.Intern i -> Format.fprintf fmt "v%d" i in
Format.fprintf fmt "%a" (Simplex.print_debug print_var) s
let cache = ElH.create 97
let simplex_is_int = function
| Simplex.Extern v -> is_int v
| Simplex.Intern _ -> false
let add_expr e st =
let st = Simplex.copy st in
try
begin match fneg (of_bexpr e) with
| (b, "$less", c) -> Simplex.add_constraints st [Simplex.Less, b, c]
| (b, "$lesseq", c) -> Simplex.add_constraints st [Simplex.LessEq, b, c]
| (b, "$greater", c) -> Simplex.add_constraints st [Simplex.Greater, b, c]
| (b, "$greatereq", c) -> Simplex.add_constraints st [Simplex.GreaterEq, b, c]
| (b, "=", c) -> Simplex.add_constraints st [Simplex.Eq, b, c]
| _ -> ()
end;
st
with
| NotaFormula -> assert false
let rec get_state l =
try
ElH.find cache l
with Not_found ->
begin match l with
| [] -> Some(Simplex.create (), fun () -> None)
| e :: r ->
let res = match get_state r with
| None -> None
| Some(st, _) ->
let st = add_expr e st in
try
let f = Simplex.nsolve_incr st simplex_is_int in
begin match f () with
| None -> Some(st, f)
| Some Simplex.Solution _ -> Some(st, f)
| Some Simplex.Unsatisfiable _ -> None
end
with Invalid_argument x when x = "Simplex is empty." -> Some(st, fun _ -> None)
in
ElH.add cache l res;
res
end
type solution =
| Unsat
| Abstract of (expr * expr) list
let try_solve l =
Log.debug 8 "arith -- Trying to contradict :";
List.iter (fun e -> Log.debug 8 "arith -- %a" Print.pp_expr e) l;
match get_state l with
| None -> Unsat
| Some (st, f) -> begin match f () with
| None -> Unsat
| Some Simplex.Unsatisfiable _ -> Unsat
| Some Simplex.Solution s ->
Log.debug 8 "arith -- simplex solution found";
Log.debug 10 "arith -- simplex state :\n%a" pp_simplex st;
Log.debug 8 "arith -- tentative solution :";
let rec aux = function
| [] -> []
| (Simplex.Extern v, k) :: r ->
let e' = to_nexpr [k, etrue] in
Log.debug 8 "arith -- %a == %a" Print.pp_expr v Print.pp_expr e';
(v, e') :: (aux r)
| (Simplex.Intern _, _) :: r -> aux r
in
Abstract (aux s)
end
let solve_tree t =
reset t;
let rec aux () =
match try_solve (current t) with
| Unsat ->
begin try
next t;
aux ()
with EndReached -> Unsat end
| x -> x
in
aux ()