-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlltolp.ml
1081 lines (1002 loc) · 33.7 KB
/
lltolp.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Copyright 2004 INRIA *)
Version.add "$Id$";;
open Printf
open Expr
open Llproof
open Dkterm
open Lpprint
open Namespace
let hyp_prefix = "H"
(* context: store declared variables x_P of type prf |P|
*)
let context = ref (Hashtbl.create 997)
(*let metactx = ref (Hashtbl.create 9)*)
(*let rawname e = sprintf "%s%x" hyp_prefix (Index.get_number e)*)
let rawname_prf e = sprintf "%s%s%x" "prf_" hyp_prefix (Index.get_number e)
(*let rawname_meta e = sprintf "%s%x" "const_" (Index.get_number e)*)
exception No_proof of string
(* exception No_meta of string*)
(* manage context of declared variables
*)
let add_context e dke =
Log.debug 4 " |- Add context %s :: %a"
(match dke with
| Dkvar (name, _) -> name
| Dkapp (name, _, []) -> name
| _ -> assert false)
Print.pp_expr e;
Hashtbl.add !context e dke
let get_context e =
try
let dke = Hashtbl.find !context e in
Log.debug 5 " |- Get context %s :: %a"
(match dke with
| Dkvar (name, _) -> name
| Dkapp (name, _, []) -> name
| _ -> assert false)
Print.pp_expr e;
dke
with Not_found ->
raise (No_proof (Printf.sprintf "for expr %s"
(Print.sexpr e)))
let exists_in_context e =
try
let _ = Hashtbl.find !context (Rewrite.normalize_fm e) in
true
with Not_found ->
Log.debug 5 "Expression %a not found in context"
Print.pp_expr_t e;
false
(* let add_metactx e dke =
Log.debug 3 " |- Add metactx %a" Print.pp_expr e;
Hashtbl.add !metactx e dke*)
(*let get_metactx e =
Log.debug 3 " |- Get metactx %a" Print.pp_expr e;
try
Hashtbl.find !metactx e
with Not_found ->
raise (No_meta (Printf.sprintf "for meta %s"
(Print.sexpr e)))*)
let mk_zterm =
mk_app ("Z", mk_typetype, [])
(* symbols coming from arithmetic extension
*)
let predefined_sym =
[("Z", ("Z", mk_typetype));
("$less", ("less", mk_arrow ([mk_zterm; mk_zterm], mk_typeprop)));
("$lesseq", ("lesseq", mk_arrow ([mk_zterm; mk_zterm], mk_typeprop)));
("$greater", ("greater", mk_arrow ([mk_zterm; mk_zterm], mk_typeprop)));
("$greatereq", ("greatereq", mk_arrow ([mk_zterm; mk_zterm], mk_typeprop)));
("$uminus", ("uminus", mk_arrow ([mk_zterm], mk_zterm)));
("$sum", ("sum", mk_arrow ([mk_zterm; mk_zterm], mk_zterm)));
("$difference", ("difference", mk_arrow ([mk_zterm; mk_zterm], mk_zterm)));
("$product", ("product", mk_arrow ([mk_zterm; mk_zterm], mk_zterm)));
("$is_int", ("is_int", mk_arrow ([mk_zterm], mk_typeprop)));
("$is_rat", ("is_rat", mk_arrow ([mk_zterm], mk_typeprop)));
("$to_int", ("to_int", mk_arrow ([mk_zterm], mk_zterm)));
("$to_rat", ("to_rat", mk_arrow ([mk_zterm], mk_zterm)));
("$to_real", ("to_real", mk_arrow ([mk_zterm], mk_zterm)))
]
(* translation function for types *)
let rec translate_type e =
match e with
| e when (Expr.equal e type_type) ->
mk_typetype
| e when (Expr.equal e type_prop) ->
mk_typeprop
| e when (Expr.equal e type_iota) ->
mk_typeiota
| Evar (v, _) as v' ->
let ty = translate_type (get_type v') in
mk_var (v, ty)
| Emeta _ -> assert false
| Eapp (Evar (v, _) as v', [], _) ->
let ty = translate_type (get_type v') in
mk_app (v, ty, [])
| Eapp (Evar (v, _) as v', args, _) ->
let ty = translate_type (get_type v') in
let args' = List.map translate_type args in
mk_app (v, ty, args')
| Earrow (args, ret, _) ->
let args' = List.map translate_type args in
let ret' = translate_type ret in
mk_arrow (args', ret')
| Eall (Evar (v, _) as v', p, _) ->
let ty = translate_type (get_type v') in
let nv = mk_var (v, ty) in
let p' = translate_type p in
mk_pi (nv, p')
| Etau _ as e ->
let v = Index.make_tau_name e in
let ty = translate_type (get_type e) in
mk_var (v, ty)
| _ -> assert false
(* translation function for expressions *)
and translate_expr e =
match e with
| Evar (v, _) as v' when Mltoll.is_meta v ->
let ty = translate_type (get_type v') in
mk_app (v, ty, [])
| Evar (v, _) as v' ->
let ty = translate_type (get_type v') in
mk_var (v, ty)
| Emeta _ -> assert false
| Eapp (Evar (v, _) as v', [], _) ->
let ty = translate_type (get_type v') in
mk_app (v, ty, [])
| Eapp (Evar ("=", _), [e1; e2], _) ->
let ty = translate_type (get_type e1) in
let e1' = translate_expr e1 in
let e2' = translate_expr e2 in
mk_equal (ty, e1', e2')
| Eapp (Evar (v, _) as v', args, _)
when (List.mem_assoc v predefined_sym) ->
let v = fst (List.assoc v predefined_sym) in
let ty = translate_type (get_type v') in
let args' = List.map translate_expr args in
mk_app (v, ty, args')
| Eapp (Evar (v, _) as v', args, _) ->
let ty = translate_type (get_type v') in
let args' = List.map translate_expr args in
mk_app (v, ty, args')
| Enot (e, _) ->
let e' = translate_expr e in
mk_not (e')
| Eand (e1, e2, _) ->
let e1' = translate_expr e1 in
let e2' = translate_expr e2 in
mk_and (e1', e2')
| Eor (e1, e2, _) ->
let e1' = translate_expr e1 in
let e2' = translate_expr e2 in
mk_or (e1', e2')
| Eimply (e1, e2, _) ->
let e1' = translate_expr e1 in
let e2' = translate_expr e2 in
mk_imply (e1', e2')
| Eequiv (e1, e2, _) ->
let e1' = translate_expr e1 in
let e2' = translate_expr e2 in
mk_equiv (e1', e2')
| Etrue ->
mk_true
| Efalse ->
mk_false
| Eall (Evar (v, _) as v', p, _)
when Expr.equal (get_type v') type_type ->
let ty = mk_typetype in
let nv = mk_var (v, ty) in
let p' = translate_expr p in
mk_foralltype (mk_lam (nv, p'))
| Eall (Evar (v, _) as v', p, _) ->
let ty = translate_type (get_type v') in
let nv = mk_var (v, ty) in
let p' = translate_expr p in
mk_forall (ty, mk_lam (nv, p'))
| Eall _ -> assert false
| Eex (Evar (v, _) as v', p, _)
when Expr.equal (get_type v') type_type ->
let ty = mk_typetype in
let nv = mk_var (v, ty) in
let p' = translate_expr p in
mk_existstype (mk_lam (nv, p'))
| Eex (Evar (v, _) as v', p, _) ->
let ty = translate_type (get_type v') in
let nv = mk_var (v, ty) in
let p' = translate_expr p in
mk_exists (ty, mk_lam (nv, p'))
| Eex _ -> assert false
| Etau _ as e ->
let v = Index.make_tau_name e in
let ty = translate_type (get_type e) in
mk_var (v, ty)
| Elam (Evar (v, _) as v', p, _) ->
let ty = translate_type (get_type v') in
let nv = mk_var (v, ty) in
let p' = translate_expr p in
mk_lam (nv, p')
| Elam _ -> assert false
| _ -> assert false
let rec translate_sigs_aux s accu =
match s with
| [] -> List.rev accu
| (v, s) :: tl ->
Log.debug 19 "translate sig %s : %a" v Print.pp_expr s;
let s' = translate_type s in
translate_sigs_aux tl ((v, s') :: accu)
(* translate signatures, i.e. form (v,s) to (v, s')
where v a string, s its zenon type and s' its dedukti type
*)
let translate_sigs s =
Log.debug 13 " |- Length of Sigs = %i" (List.length s);
translate_sigs_aux s []
let rec get_freevars_aux accu e =
match e with
| Evar _ when (List.exists (fun x -> (Expr.equal x e)) accu) ->
accu
| Evar _ -> (e :: accu)
| Eapp (_, args, _) ->
List.fold_left get_freevars_aux accu args
| _ -> assert false
let get_freevars e =
get_freevars_aux [] e
let tr_list_vars rule =
match rule with
| (l, _) ->
Log.debug 4 " |- Tr list var %a" Print.pp_expr l;
let vars = get_freevars l in
let nvars = List.map translate_expr vars in
List.rev nvars
(* translate rewrite rules
*)
let build_dkrwrt rule =
match rule with
| (l, r) ->
let vars = tr_list_vars rule in
let t1 = translate_expr l in
let t2 = translate_expr r in
mk_rwrt (vars, t1, t2)
let select_goal_aux accu phrase =
match phrase with
| Phrase.Hyp (name, body, flag) when flag == 0 ->
(name, body) :: accu
| _ -> accu
let select_goal phrases =
List.fold_left select_goal_aux [] phrases
let trexpr_dkgoal e =
assert (List.length e == 1);
let goal = List.hd e in
mk_proof (translate_expr goal)
(* return type of bound variable
*)
let get_type_binder e =
match e with
| Eex (v, _, _)
| Eall (v, _, _)
| Enot (Eex (v, _, _), _)
| Enot (Eall (v, _, _), _) ->
get_type v
| Elam (v, _, _) ->
get_type v
| _ ->
begin
Log.debug 19 " |- Get Type Binder : %a" Print.pp_expr e;
assert false
end
(* test if quantification over type variable
*)
let is_binder_of_type_var e =
Expr.equal (get_type_binder e) type_type
(* lemma option is disabled for dedukti output, i.e. only one
*)
let extract_prooftree lemmas =
Log.debug 8 " Number of Lemmas : %i" (List.length lemmas);
match lemmas with
| [] -> assert false
| [lemma] ->
let prooftree = match lemma with
| {proof = p; _ } -> p
in
prooftree
| _ -> assert false
(* translate quantification into lambda abstraction
*)
let translate_quant_to_dklam p =
match p with
| Eall (Evar (v, _) as v', p, _) ->
let ty = translate_type (get_type v') in
let nv = mk_var (v, ty) in
let p' = translate_expr p in
mk_lam (nv, p')
| Eex (Evar (v, _) as v', p, _) ->
let ty = translate_type (get_type v') in
let nv = mk_var (v, ty) in
let p' = translate_expr p in
mk_lam (nv, p')
| Elam (Evar (v, _) as v', p, _) ->
let ty = translate_type (get_type v') in
let nv = mk_var (v, ty) in
let p' = translate_expr p in
mk_lam (nv, p')
| _ -> assert false
(* define a variable of type prf of the expression e
*)
let mk_pr_var e =
let norm_e = Rewrite.normalize_fm e in
try
Hashtbl.find !context norm_e
with Not_found ->
begin
let v = rawname_prf norm_e in
let ty = translate_expr norm_e in
let dke = mk_var (v, mk_proof (ty)) in
add_context norm_e dke;
dke
end
let get_pr_var e =
let norm_e = Rewrite.normalize_fm e in
get_context norm_e
(* translate a proof tree into a DK term
*)
let rec trproof_dk p =
Log.debug 4 " ||-- trproof ";
Log.debug 4 " > %a" Print.llproof_rule_db p.rule;
match p with
| {conc = pconc;
rule = prule;
hyps = phyps;}
->
List.iter (fun x -> Log.debug 6 " >> conc : %a" Print.pp_expr x)
pconc;
match prule with
| Rfalse ->
Log.debug 7 " false";
let conc = get_pr_var efalse in
mk_DkRfalse conc
| Rnottrue ->
Log.debug 7 " not true";
let conc = get_pr_var (enot etrue) in
mk_DkRnottrue conc
| Raxiom (p) ->
Log.debug 7 " axiom %a" Print.pp_expr p;
let dkp = translate_expr p in
let concp = get_pr_var p in
let concnp = get_pr_var (enot p) in
mk_DkRaxiom (dkp, concp, concnp)
| Rcut (p) ->
Log.debug 7 " cut %a" Print.pp_expr p;
let dkp = translate_expr p in
let pr0 = mk_pr_var p in
let pr1 = mk_pr_var (enot p) in
let sub0 = trproof_dk (List.nth phyps 0) in
let sub1 = trproof_dk (List.nth phyps 1) in
let lam0 = mk_lam (pr0, sub0) in
let lam1 = mk_lam (pr1, sub1) in
mk_DkRcut (dkp, lam0, lam1)
| Rnoteq (t) ->
Log.debug 7 " noteq %a" Print.pp_expr t;
let a = translate_type (get_type t) in
let dkt = translate_expr t in
let conc = get_pr_var (enot (eeq t t)) in
mk_DkRnoteq (a, dkt, conc)
| Reqsym (t, u) ->
Log.debug 7 " eqsym %a %a" Print.pp_expr t Print.pp_expr u;
let a = translate_type (get_type t) in
let dkt = translate_expr t in
let dku = translate_expr u in
let conc0 = get_pr_var (eeq t u) in
let conc1 = get_pr_var (enot (eeq u t)) in
mk_DkReqsym (a, dkt, dku, conc0, conc1)
| Rnotnot (p) ->
let dkp = translate_expr p in
let pr = mk_pr_var p in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (pr, sub) in
let conc = get_pr_var (enot (enot p)) in
mk_DkRnotnot (dkp, lam, conc)
| Rconnect (And, p, q) ->
let dkp = translate_expr p in
let dkq = translate_expr q in
let prp = mk_pr_var p in
let prq = mk_pr_var q in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prp, mk_lam (prq, sub)) in
let conc = get_pr_var (eand (p, q)) in
mk_DkRand (dkp, dkq, lam, conc)
| Rconnect (Or, p, q) ->
let dkp = translate_expr p in
let dkq = translate_expr q in
let prp = mk_pr_var p in
let prq = mk_pr_var q in
let subp = trproof_dk (List.nth phyps 0) in
let subq = trproof_dk (List.nth phyps 1) in
let lamp = mk_lam (prp, subp) in
let lamq = mk_lam (prq, subq) in
let conc = get_pr_var (eor (p, q)) in
mk_DkRor (dkp, dkq, lamp, lamq, conc)
| Rconnect (Imply, p, q) ->
let dkp = translate_expr p in
let dkq = translate_expr q in
let prnp = mk_pr_var (enot p) in
let prq = mk_pr_var q in
let subp = trproof_dk (List.nth phyps 0) in
let subq = trproof_dk (List.nth phyps 1) in
let lamp = mk_lam (prnp, subp) in
let lamq = mk_lam (prq, subq) in
let conc = get_pr_var (eimply (p, q)) in
mk_DkRimply (dkp, dkq, lamp, lamq, conc)
| Rconnect (Equiv, p, q) ->
let dkp = translate_expr p in
let dkq = translate_expr q in
let prp = mk_pr_var p in
let prnp = mk_pr_var (enot p) in
let prq = mk_pr_var q in
let prnq = mk_pr_var (enot q) in
let sub0 = trproof_dk (List.nth phyps 0) in
let sub1 = trproof_dk (List.nth phyps 1) in
let lam0 = mk_lam (prnp, mk_lam (prnq, sub0)) in
let lam1 = mk_lam (prp, mk_lam (prq, sub1)) in
let conc = get_pr_var (eequiv (p, q)) in
mk_DkRequiv (dkp, dkq, lam0, lam1, conc)
| Rnotconnect (And, p, q) ->
let dkp = translate_expr p in
let dkq = translate_expr q in
let prnp = mk_pr_var (enot p) in
let prnq = mk_pr_var (enot q) in
let sub0 = trproof_dk (List.nth phyps 0) in
let sub1 = trproof_dk (List.nth phyps 1) in
let lam0 = mk_lam (prnp, sub0) in
let lam1 = mk_lam (prnq, sub1) in
let conc = get_pr_var (enot (eand (p, q))) in
mk_DkRnotand (dkp, dkq, lam0, lam1, conc)
| Rnotconnect (Or, p, q) ->
let dkp = translate_expr p in
let dkq = translate_expr q in
let prnp = mk_pr_var (enot p) in
let prnq = mk_pr_var (enot q) in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prnp, mk_lam (prnq, sub)) in
let conc = get_pr_var (enot (eor (p, q))) in
mk_DkRnotor (dkp, dkq, lam, conc)
| Rnotconnect (Imply, p, q) ->
let dkp = translate_expr p in
let dkq = translate_expr q in
let prp = mk_pr_var p in
let prnq = mk_pr_var (enot q) in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prp, mk_lam (prnq, sub)) in
let conc = get_pr_var (enot (eimply (p, q))) in
mk_DkRnotimply (dkp, dkq, lam, conc)
| Rnotconnect (Equiv, p, q) ->
let dkp = translate_expr p in
let dkq = translate_expr q in
let prp = mk_pr_var p in
let prnp = mk_pr_var (enot p) in
let prq = mk_pr_var q in
let prnq = mk_pr_var (enot q) in
let sub0 = trproof_dk (List.nth phyps 0) in
let sub1 = trproof_dk (List.nth phyps 1) in
let lam0 = mk_lam (prnp, mk_lam (prq, sub0)) in
let lam1 = mk_lam (prp, mk_lam (prnq, sub1)) in
let conc = get_pr_var (enot (eequiv (p, q))) in
mk_DkRnotequiv (dkp, dkq, lam0, lam1, conc)
| Rex (Eex (Evar (_, _) as vx, px, _) as exp, _) ->
if (is_binder_of_type_var exp) then
let dkp = translate_quant_to_dklam exp in
let zz = etau (vx, px) in
let dkzz = translate_expr zz in
let pzz = substitute [(vx, zz)] px in
let prpzz = mk_pr_var pzz in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (dkzz, mk_lam (prpzz, sub)) in
let conc = get_pr_var exp in
mk_DkRextype (dkp, lam, conc)
else
let dkp = translate_quant_to_dklam exp in
let a = translate_type (get_type_binder exp) in
let zz = etau (vx, px) in
let dkzz = translate_expr zz in
let pzz = substitute [(vx, zz)] px in
let prpzz = mk_pr_var pzz in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (dkzz, mk_lam (prpzz, sub)) in
let conc = get_pr_var exp in
mk_DkRex (a, dkp, lam, conc)
| Rall (Eall (Evar (_, _) as vx, px, _) as allp, t) ->
if (is_binder_of_type_var allp) then
let dkp = translate_quant_to_dklam allp in
let dkt = translate_expr t in
let pt = substitute [(vx, t)] px in
let prpt = mk_pr_var pt in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prpt, sub) in
let conc = get_pr_var allp in
mk_DkRalltype (dkp, dkt, lam, conc)
else
let a = translate_type (get_type_binder allp) in
let dkp = translate_quant_to_dklam allp in
let dkt = translate_expr t in
let pt = substitute [(vx, t)] px in
let prpt = mk_pr_var pt in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prpt, sub) in
let conc = get_pr_var allp in
mk_DkRall (a, dkp, dkt, lam, conc)
| Rnotex (Eex (Evar (_, _) as vx, px, _) as exp, t) ->
if (is_binder_of_type_var exp) then
let dkp = translate_quant_to_dklam exp in
let dkt = translate_expr t in
let pt = enot (substitute [(vx, t)] px) in
let prpt = mk_pr_var pt in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prpt, sub) in
let conc = get_pr_var (enot exp) in
mk_DkRnotextype (dkp, dkt, lam, conc)
else
let a = translate_type (get_type_binder exp) in
let dkp = translate_quant_to_dklam exp in
let dkt = translate_expr t in
let pt = enot (substitute [(vx, t)] px) in
let prpt = mk_pr_var pt in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prpt, sub) in
let conc = get_pr_var (enot exp) in
mk_DkRnotex (a, dkp, dkt, lam, conc)
| Rnotall (Eall (Evar (_, _) as vx, px, _) as allp, _) ->
if (is_binder_of_type_var allp) then
let dkp = translate_quant_to_dklam allp in
let zz = etau (vx, enot (px)) in
let dkzz = translate_expr zz in
let pzz = substitute [(vx, zz)] px in
let prpzz = mk_pr_var (enot pzz) in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (dkzz, mk_lam (prpzz, sub)) in
let conc = get_pr_var (enot allp) in
mk_DkRnotalltype (dkp, lam, conc)
else
let dkp = translate_quant_to_dklam allp in
let a = translate_type (get_type_binder allp) in
let zz = etau (vx, enot (px)) in
let dkzz = translate_expr zz in
let pzz = substitute [(vx, zz)] px in
let prpzz = mk_pr_var (enot pzz) in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (dkzz, mk_lam (prpzz, sub)) in
let conc = get_pr_var (enot allp) in
mk_DkRnotall (a, dkp, lam, conc)
| Rpnotp ((Eapp (Evar (p, _), args1, _) as pp),
(Enot (Eapp (Evar (q, _), args2, _) as qq, _))) ->
assert (p == q);
assert (List.length args1 == List.length args2);
let (_, argspp) = Expr.split_list (Expr.nb_tvar pp) args1 in
let (_, argsnqq) = Expr.split_list (Expr.nb_tvar qq) args2 in
mk_pnotp_subst pp argspp argsnqq phyps
| Rnotequal ((Eapp (Evar (f, _), args1, _) as ff),
(Eapp (Evar (g, _), args2, _) as gg)) ->
assert (f == g);
assert (List.length args1 == List.length args2);
let (_, argsff) = Expr.split_list (Expr.nb_tvar ff) args1 in
let (_, argsgg) = Expr.split_list (Expr.nb_tvar gg) args2 in
mk_notequal_subst ff gg argsff argsgg phyps
| Rextension (_, "zenon_notallex", _, _, _) ->
assert false
| RcongruenceLR (p, t1, t2) ->
let a = translate_type (get_type t1) in
let dkp = translate_expr p in
let dkt1 = translate_expr t1 in
let dkt2 = translate_expr t2 in
let prp = mk_pr_var (apply p t2) in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prp, sub) in
let conc1 = get_pr_var (apply p t1) in
let conc2 = get_pr_var (eeq t1 t2) in
mk_DkRconglr (a, dkp, dkt1, dkt2, lam, conc1, conc2)
| RcongruenceRL (p, t1, t2) ->
let a = translate_type (get_type t1) in
let dkp = translate_expr p in
let dkt1 = translate_expr t1 in
let dkt2 = translate_expr t2 in
let prp = mk_pr_var (apply p t2) in
let sub = trproof_dk (List.nth phyps 0) in
let lam = mk_lam (prp, sub) in
let conc1 = get_pr_var (apply p t1) in
let conc2 = get_pr_var (eeq t2 t1) in
mk_DkRcongrl (a, dkp, dkt1, dkt2, lam, conc1, conc2)
| Rextension (_, "zenon_recfun_unfold", _, [conc], [[hyp]]) ->
(* For recursive definitions, we assume that conc and hyp
are convertible in Dedukti. We just print the eta-expanded
form of the subtree *)
begin
match phyps with
| [phyp] ->
let prp = mk_pr_var hyp in
let sub = trproof_dk phyp in
let lam = mk_lam (prp, sub) in
let tr_conc = get_pr_var conc in
(* Hack for applying the lambda *)
mk_app ("", mk_typeiota, [lam; tr_conc])
| _ -> assert false
end
| Rextension (ext, name, args, concs, hyps) ->
assert (List.for_all exists_in_context concs);
Log.debug 7 " |- Extension Proof Step >> %s" name;
List.iter (fun x -> Log.debug 7 " args : %a" Print.pp_expr x)
args;
List.iter (fun x -> Log.debug 7 " conc : %a" Print.pp_expr x)
concs;
List.iter (fun x -> Log.debug 7 " hyps : %a" Print.pp_expr x)
(List.flatten hyps);
let ext = if ext = "" then "focal" else ext in
(*List.iter (fun e -> ignore (mk_pr_var e)) (List.flatten hyps);*)
let tr_args = List.map translate_expr args in
assert ((List.length hyps) = (List.length phyps));
let build_lam hyps phyp =
let prp = List.map mk_pr_var hyps in
let sub = trproof_dk phyp in
let lam =
if (List.length prp > 1)
then
List.fold_left (fun lam pr -> mk_lam (pr, lam))
(mk_lam (List.hd prp, sub)) (List.tl prp)
else
begin
assert (List.length prp = 1);
mk_lam (List.hd prp, sub)
end
in
lam
in
let lambdas = List.map2 build_lam hyps phyps in
let tr_concs = List.map get_pr_var concs in
mk_app (ext ^ "." ^ name,
mk_typeiota,
List.append tr_args (List.append lambdas tr_concs))
| Rdefinition _ ->
(match phyps with
| [ next ] -> trproof_dk next
| _ -> assert false)
| _ -> assert false
and mk_pnotp_subst pp argspp argsnqq phyps =
Log.debug 6 " |- Pred %a" Print.pp_expr pp;
match pp, argspp, argsnqq with
| Eapp _, [], [] ->
assert (List.length phyps == 0);
let dkp = translate_expr pp in
let concp = get_pr_var pp in
let concnp = get_pr_var (enot pp) in
mk_DkRaxiom (dkp, concp, concnp)
| Eapp _, h1 :: tl1, h2 :: tl2 ->
let app_to_lam p e =
match p with
| Eapp (sym, args, _) ->
assert (List.mem e args);
let v = tvar (newname()) (get_type e) in
let idx = (List.length args)
- (List.length argspp)
in
assert (Expr.equal (List.nth args idx) e);
let rec f accu l i =
match l with
| [] -> assert false
| h :: tl ->
if (i == 0)
&& (Expr.equal h e) then
List.append (List.rev accu) (v :: tl)
else f (h :: accu) tl (i - 1)
in
let nargs = f [] args idx in
let np = eapp (sym, nargs) in
elam (v, np)
| _ -> assert false
in
assert (Expr.equal (get_type h1) (get_type h2));
let a = translate_type (get_type h1) in
let p_lam = app_to_lam pp h1 in
let (dkvv, dkpp) =
match p_lam with
| Elam (v, np, _) ->
(translate_expr v, translate_expr np)
| _ -> assert false
in
let dkpp = mk_lam (dkvv, dkpp) in
let dkt1 = translate_expr h1 in
let dkt2 = translate_expr h2 in
let p_subst = apply p_lam h2 in
let notequalt1t2 = enot (eeq h1 h2) in
let prnotequalt1t2 = mk_pr_var notequalt1t2 in
let prpt2 = mk_pr_var p_subst in
let (sub, phyps_new) =
match phyps with
| hhyp :: tlhyps -> (trproof_dk hhyp, tlhyps)
| _ -> assert false
in
let lam0 = mk_lam (prnotequalt1t2, sub) in
let conc = get_pr_var pp in
mk_DkRsubst (a, dkpp, dkt1, dkt2, lam0,
mk_lam (prpt2,
mk_pnotp_subst p_subst tl1 tl2 phyps_new),
conc)
| _, _, _ -> assert false
and mk_notequal_subst ff gg argsff argsgg phyps =
Log.debug 6 " |- Fun %a /= %a" Print.pp_expr ff Print.pp_expr gg;
List.iter (fun x -> Log.debug 7 " > argsff %a" Print.pp_expr x) argsff;
List.iter (fun x -> Log.debug 7 " > argsgg %a" Print.pp_expr x) argsgg;
match ff, gg, argsff, argsgg with
| Eapp _, Eapp _, [], [] ->
assert (List.length phyps == 0);
assert (Expr.equal ff gg);
let a = translate_type (get_type ff) in
let dkff = translate_expr ff in
let conc = get_pr_var (enot (eeq ff ff)) in
mk_DkRnoteq (a, dkff, conc)
| Eapp _, Eapp _, h1 :: tl1, h2 :: tl2 ->
let app_to_lam p e =
match p with
| Eapp (sym, args, _) ->
assert (List.mem e args);
let v = tvar (newname()) (get_type e) in
let idx = (List.length args)
- (List.length argsff)
in
assert (Expr.equal (List.nth args idx) e);
let rec f accu l i =
match l with
| [] -> assert false
| h :: tl ->
if (i == 0)
&& (Expr.equal h e) then
List.append (List.rev accu) (v :: tl)
else f (h :: accu) tl (i - 1)
in
let nargs = f [] args idx in
let np = eapp (sym, nargs) in
elam (v, np)
| _ -> assert false
in
assert (Expr.equal (get_type h1) (get_type h2));
Log.debug 7 " ff = %a" Print.pp_expr ff;
Log.debug 7 " h2 = %a" Print.pp_expr h2;
let a = translate_type (get_type h1) in
let ff_lam = app_to_lam ff h1 in
Log.debug 7 " ff_lam = %a" Print.pp_expr ff_lam;
let ff_subst = apply ff_lam h2 in
Log.debug 7 " ff_subst = %a" Print.pp_expr ff_subst;
let (dkvv, dkp) =
match ff_lam with
| Elam (v, nf, _) ->
(translate_expr v, translate_expr (enot (eeq nf gg)))
| _ -> assert false
in
let dkp = mk_lam (dkvv, dkp) in
let dkt1 = translate_expr h1 in
let dkt2 = translate_expr h2 in
let prneqt1t2 = mk_pr_var (enot (eeq h1 h2)) in
let prpt2 = mk_pr_var (enot (eeq ff_subst gg)) in
let (sub, phyps_new) =
match phyps with
| hhyp :: tlhyps -> (trproof_dk hhyp, tlhyps)
| _ -> assert false
in
let lam0 = mk_lam (prneqt1t2, sub) in
let conc = get_pr_var (enot (eeq ff gg)) in
mk_DkRsubst (a, dkp, dkt1, dkt2, lam0,
mk_lam (prpt2,
mk_notequal_subst ff_subst gg tl1 tl2 phyps_new),
conc)
| _, _, _, _ -> assert false
(* buid a DK term from a proof
*)
let make_proof_term goal prooftree =
let pr = mk_pr_var goal in
let sub = trproof_dk prooftree in
mk_lam (pr, sub)
let rec mk_prf_var_def_aux accu phrases =
match phrases with
| [] -> accu
| Phrase.Hyp (name, _, _) :: tl
when name == goal_name ->
mk_prf_var_def_aux accu tl
| Phrase.Hyp (name, fm, _) :: tl ->
let norm_fm = Rewrite.normalize_fm fm in
if Hashtbl.mem !context norm_fm then
mk_prf_var_def_aux accu tl
else
(*let v = rawname_prf norm_fm in*)
let ty = mk_proof (translate_expr norm_fm) in
let dkfm = mk_app (name, ty, []) in
add_context norm_fm dkfm;
mk_prf_var_def_aux (mk_decl (name, ty) :: accu) tl
| _ :: tl -> mk_prf_var_def_aux accu tl
(* define a variable of type prf of an hypotheses / store in context
*)
let mk_prf_var_def phrases =
mk_prf_var_def_aux [] phrases
(* Get signatures of type constructors inside a type
*)
let rec get_sigs_fm_type accu ty =
match ty with
| e when (Expr.equal e type_type)
|| (Expr.equal e type_prop)
|| (Expr.equal e type_iota) -> accu
| Evar _ -> accu
| Emeta _ -> assert false
| Eapp (Evar (v, _) as v', args, _) ->
if (List.mem_assoc v accu)
then
List.fold_left (fun x y -> get_sigs_fm_type x y) accu args
else
begin
Log.debug 13 " |- Type Sigs %s :: %a" v Print.pp_expr (get_type v');
let accu = (v, get_type v') :: accu in
List.fold_left (fun x y -> get_sigs_fm_type x y) accu args
end
| Earrow (args, ret, _) ->
let accu = List.fold_left (fun x y -> get_sigs_fm_type x y)
accu args in
get_sigs_fm_type accu ret
| Enot _
| Eand _
| Eor _
| Eimply _
| Eequiv _
| Etrue
| Efalse -> assert false
| Eall (_, p, _)
| Eex (_, p, _)
| Elam (_, p, _) -> get_sigs_fm_type accu p
| Etau _ -> accu
| _ -> assert false
(* Get type signatures (symbol, type) inside a formula
*)
let rec get_sigs_fm accu fm =
match fm with
| Evar (v, _) as v' when Mltoll.is_meta v ->
if (List.mem_assoc v accu)
then
let accu = get_sigs_fm_type accu (get_type v') in
accu
else
let accu = get_sigs_fm_type accu (get_type v') in
Log.debug 13 " |- Evar Sigs %s :: %a" v Print.pp_expr (get_type v');
let accu = (v, get_type v') :: accu in
accu
| Evar _ as v ->
let accu = get_sigs_fm_type accu (get_type v) in
accu
| Emeta _ -> assert false
| Eapp (Evar (v, _) as v', [], _) ->
if (List.mem_assoc (v) accu)
then
let accu = get_sigs_fm_type accu (get_type v') in
accu
else
let accu = (v, get_type v') :: accu in
let accu = get_sigs_fm_type accu (get_type v') in
accu
| Eapp (Evar ("=", _), args, _) ->
List.fold_left (fun x y -> get_sigs_fm x y) accu args
| Eapp (Evar (v, _) as v', args, _)
when (List.mem_assoc v predefined_sym) ->
let v = fst (List.assoc v predefined_sym) in
let v' = tvar v (get_type v') in
if (List.mem_assoc v accu)
then
let accu = get_sigs_fm_type accu (get_type v') in
List.fold_left (fun x y -> get_sigs_fm x y) accu args
else
let accu = get_sigs_fm_type accu (get_type v') in
let accu = (v, get_type v') :: accu in
List.fold_left (fun x y -> get_sigs_fm x y) accu args
| Eapp (Evar (v, _) as v', args, _) ->
if (List.mem_assoc v accu)
then
let accu = get_sigs_fm_type accu (get_type v') in
List.fold_left (fun x y -> get_sigs_fm x y) accu args
else
begin
Log.debug 13 " |- Eapp Sigs %s :: %a" v Print.pp_expr (get_type v');
let accu = (v, get_type v') :: accu in
let accu = get_sigs_fm_type accu (get_type v') in
List.fold_left (fun x y -> get_sigs_fm x y) accu args
end
| Earrow _ -> assert false
| Enot (e, _) -> get_sigs_fm accu e
| Eand (e1, e2, _)
| Eor (e1, e2, _)
| Eimply (e1, e2, _)
| Eequiv (e1, e2, _) ->
List.fold_left (fun x y -> get_sigs_fm x y) accu [e1; e2]
| Etrue
| Efalse -> accu
| Eall (_, p, _)
| Eex (_, p, _)
| Elam (_, p, _) ->
get_sigs_fm accu p
| Etau _ ->
accu
| _ -> assert false
let rec get_sigs_phrases_aux accu phrases =
match phrases with
| [] -> accu
| Phrase.Hyp (_, fm, _) :: tl ->
let accu = get_sigs_fm accu fm in
get_sigs_phrases_aux accu tl
| Phrase.Rew (_, fm, _) :: tl ->
let accu = get_sigs_fm accu fm in
get_sigs_phrases_aux accu tl
| Phrase.Def (DefReal (_, _, _, _, body, _)) :: tl ->
let accu = get_sigs_fm accu body in
get_sigs_phrases_aux accu tl
| _ :: tl ->
get_sigs_phrases_aux accu tl
(* Get type signatures from phrases
*)
let get_sigs_phrases sigs phrases =
get_sigs_phrases_aux sigs phrases
let rec get_sigs_proof_aux accu llp =
match llp with
| {conc = pconc;
rule = _;
hyps = phyps;}
->
let accu = List.fold_left (fun x y -> get_sigs_fm x y)
accu pconc in
List.fold_left (fun x y -> get_sigs_proof_aux x y) accu phyps
(* Get type signatures from proofs