forked from abisee/pointer-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatcher.py
374 lines (310 loc) · 17.7 KB
/
batcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains code to process data into batches"""
import Queue
from random import shuffle
from threading import Thread
import time
import numpy as np
import tensorflow as tf
import data
class Example(object):
"""Class representing a train/val/test example for text summarization."""
def __init__(self, article, abstract_sentences, vocab, hps):
"""Initializes the Example, performing tokenization and truncation to produce the encoder, decoder and target sequences, which are stored in self.
Args:
article: source text; a string. each token is separated by a single space.
abstract_sentences: list of strings, one per abstract sentence. In each sentence, each token is separated by a single space.
vocab: Vocabulary object
hps: hyperparameters
"""
self.hps = hps
# Get ids of special tokens
start_decoding = vocab.word2id(data.START_DECODING)
stop_decoding = vocab.word2id(data.STOP_DECODING)
# Process the article
article_words = article.split()
if len(article_words) > hps.max_enc_steps:
article_words = article_words[:hps.max_enc_steps]
self.enc_len = len(article_words) # store the length after truncation but before padding
self.enc_input = [vocab.word2id(w) for w in article_words] # list of word ids; OOVs are represented by the id for UNK token
# Process the abstract
abstract = ' '.join(abstract_sentences) # string
abstract_words = abstract.split() # list of strings
abs_ids = [vocab.word2id(w) for w in abstract_words] # list of word ids; OOVs are represented by the id for UNK token
# Get the decoder input sequence and target sequence
self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, hps.max_dec_steps, start_decoding, stop_decoding)
self.dec_len = len(self.dec_input)
# If using pointer-generator mode, we need to store some extra info
if hps.pointer_gen:
# Store a version of the enc_input where in-article OOVs are represented by their temporary OOV id; also store the in-article OOVs words themselves
self.enc_input_extend_vocab, self.article_oovs = data.article2ids(article_words, vocab)
# Get a verison of the reference summary where in-article OOVs are represented by their temporary article OOV id
abs_ids_extend_vocab = data.abstract2ids(abstract_words, vocab, self.article_oovs)
# Overwrite decoder target sequence so it uses the temp article OOV ids
_, self.target = self.get_dec_inp_targ_seqs(abs_ids_extend_vocab, hps.max_dec_steps, start_decoding, stop_decoding)
# Store the original strings
self.original_article = article
self.original_abstract = abstract
self.original_abstract_sents = abstract_sentences
def get_dec_inp_targ_seqs(self, sequence, max_len, start_id, stop_id):
"""Given the reference summary as a sequence of tokens, return the input sequence for the decoder, and the target sequence which we will use to calculate loss. The sequence will be truncated if it is longer than max_len. The input sequence must start with the start_id and the target sequence must end with the stop_id (but not if it's been truncated).
Args:
sequence: List of ids (integers)
max_len: integer
start_id: integer
stop_id: integer
Returns:
inp: sequence length <=max_len starting with start_id
target: sequence same length as input, ending with stop_id only if there was no truncation
"""
inp = [start_id] + sequence[:]
target = sequence[:]
if len(inp) > max_len: # truncate
inp = inp[:max_len]
target = target[:max_len] # no end_token
else: # no truncation
target.append(stop_id) # end token
assert len(inp) == len(target)
return inp, target
def pad_decoder_inp_targ(self, max_len, pad_id):
"""Pad decoder input and target sequences with pad_id up to max_len."""
while len(self.dec_input) < max_len:
self.dec_input.append(pad_id)
while len(self.target) < max_len:
self.target.append(pad_id)
def pad_encoder_input(self, max_len, pad_id):
"""Pad the encoder input sequence with pad_id up to max_len."""
while len(self.enc_input) < max_len:
self.enc_input.append(pad_id)
if self.hps.pointer_gen:
while len(self.enc_input_extend_vocab) < max_len:
self.enc_input_extend_vocab.append(pad_id)
class Batch(object):
"""Class representing a minibatch of train/val/test examples for text summarization."""
def __init__(self, example_list, hps, vocab):
"""Turns the example_list into a Batch object.
Args:
example_list: List of Example objects
hps: hyperparameters
vocab: Vocabulary object
"""
self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences
self.init_encoder_seq(example_list, hps) # initialize the input to the encoder
self.init_decoder_seq(example_list, hps) # initialize the input and targets for the decoder
self.store_orig_strings(example_list) # store the original strings
def init_encoder_seq(self, example_list, hps):
"""Initializes the following:
self.enc_batch:
numpy array of shape (batch_size, <=max_enc_steps) containing integer ids (all OOVs represented by UNK id), padded to length of longest sequence in the batch
self.enc_lens:
numpy array of shape (batch_size) containing integers. The (truncated) length of each encoder input sequence (pre-padding).
self.enc_padding_mask:
numpy array of shape (batch_size, <=max_enc_steps), containing 1s and 0s. 1s correspond to real tokens in enc_batch and target_batch; 0s correspond to padding.
If hps.pointer_gen, additionally initializes the following:
self.max_art_oovs:
maximum number of in-article OOVs in the batch
self.art_oovs:
list of list of in-article OOVs (strings), for each example in the batch
self.enc_batch_extend_vocab:
Same as self.enc_batch, but in-article OOVs are represented by their temporary article OOV number.
"""
# Determine the maximum length of the encoder input sequence in this batch
max_enc_seq_len = max([ex.enc_len for ex in example_list])
# Pad the encoder input sequences up to the length of the longest sequence
for ex in example_list:
ex.pad_encoder_input(max_enc_seq_len, self.pad_id)
# Initialize the numpy arrays
# Note: our enc_batch can have different length (second dimension) for each batch because we use dynamic_rnn for the encoder.
self.enc_batch = np.zeros((hps.batch_size, max_enc_seq_len), dtype=np.int32)
self.enc_lens = np.zeros((hps.batch_size), dtype=np.int32)
self.enc_padding_mask = np.zeros((hps.batch_size, max_enc_seq_len), dtype=np.float32)
# Fill in the numpy arrays
for i, ex in enumerate(example_list):
self.enc_batch[i, :] = ex.enc_input[:]
self.enc_lens[i] = ex.enc_len
for j in xrange(ex.enc_len):
self.enc_padding_mask[i][j] = 1
# For pointer-generator mode, need to store some extra info
if hps.pointer_gen:
# Determine the max number of in-article OOVs in this batch
self.max_art_oovs = max([len(ex.article_oovs) for ex in example_list])
# Store the in-article OOVs themselves
self.art_oovs = [ex.article_oovs for ex in example_list]
# Store the version of the enc_batch that uses the article OOV ids
self.enc_batch_extend_vocab = np.zeros((hps.batch_size, max_enc_seq_len), dtype=np.int32)
for i, ex in enumerate(example_list):
self.enc_batch_extend_vocab[i, :] = ex.enc_input_extend_vocab[:]
def init_decoder_seq(self, example_list, hps):
"""Initializes the following:
self.dec_batch:
numpy array of shape (batch_size, max_dec_steps), containing integer ids as input for the decoder, padded to max_dec_steps length.
self.target_batch:
numpy array of shape (batch_size, max_dec_steps), containing integer ids for the target sequence, padded to max_dec_steps length.
self.dec_padding_mask:
numpy array of shape (batch_size, max_dec_steps), containing 1s and 0s. 1s correspond to real tokens in dec_batch and target_batch; 0s correspond to padding.
"""
# Pad the inputs and targets
for ex in example_list:
ex.pad_decoder_inp_targ(hps.max_dec_steps, self.pad_id)
# Initialize the numpy arrays.
# Note: our decoder inputs and targets must be the same length for each batch (second dimension = max_dec_steps) because we do not use a dynamic_rnn for decoding. However I believe this is possible, or will soon be possible, with Tensorflow 1.0, in which case it may be best to upgrade to that.
self.dec_batch = np.zeros((hps.batch_size, hps.max_dec_steps), dtype=np.int32)
self.target_batch = np.zeros((hps.batch_size, hps.max_dec_steps), dtype=np.int32)
self.dec_padding_mask = np.zeros((hps.batch_size, hps.max_dec_steps), dtype=np.float32)
# Fill in the numpy arrays
for i, ex in enumerate(example_list):
self.dec_batch[i, :] = ex.dec_input[:]
self.target_batch[i, :] = ex.target[:]
for j in xrange(ex.dec_len):
self.dec_padding_mask[i][j] = 1
def store_orig_strings(self, example_list):
"""Store the original article and abstract strings in the Batch object"""
self.original_articles = [ex.original_article for ex in example_list] # list of lists
self.original_abstracts = [ex.original_abstract for ex in example_list] # list of lists
self.original_abstracts_sents = [ex.original_abstract_sents for ex in example_list] # list of list of lists
class Batcher(object):
"""A class to generate minibatches of data. Buckets examples together based on length of the encoder sequence."""
BATCH_QUEUE_MAX = 100 # max number of batches the batch_queue can hold
def __init__(self, data_path, vocab, hps, single_pass):
"""Initialize the batcher. Start threads that process the data into batches.
Args:
data_path: tf.Example filepattern.
vocab: Vocabulary object
hps: hyperparameters
single_pass: If True, run through the dataset exactly once (useful for when you want to run evaluation on the dev or test set). Otherwise generate random batches indefinitely (useful for training).
"""
self._data_path = data_path
self._vocab = vocab
self._hps = hps
self._single_pass = single_pass
# Initialize a queue of Batches waiting to be used, and a queue of Examples waiting to be batched
self._batch_queue = Queue.Queue(self.BATCH_QUEUE_MAX)
self._example_queue = Queue.Queue(self.BATCH_QUEUE_MAX * self._hps.batch_size)
# Different settings depending on whether we're in single_pass mode or not
if single_pass:
self._num_example_q_threads = 1 # just one thread, so we read through the dataset just once
self._num_batch_q_threads = 1 # just one thread to batch examples
self._bucketing_cache_size = 1 # only load one batch's worth of examples before bucketing; this essentially means no bucketing
self._finished_reading = False # this will tell us when we're finished reading the dataset
else:
self._num_example_q_threads = 16 # num threads to fill example queue
self._num_batch_q_threads = 4 # num threads to fill batch queue
self._bucketing_cache_size = 100 # how many batches-worth of examples to load into cache before bucketing
# Start the threads that load the queues
self._example_q_threads = []
for _ in xrange(self._num_example_q_threads):
self._example_q_threads.append(Thread(target=self.fill_example_queue))
self._example_q_threads[-1].daemon = True
self._example_q_threads[-1].start()
self._batch_q_threads = []
for _ in xrange(self._num_batch_q_threads):
self._batch_q_threads.append(Thread(target=self.fill_batch_queue))
self._batch_q_threads[-1].daemon = True
self._batch_q_threads[-1].start()
# Start a thread that watches the other threads and restarts them if they're dead
if not single_pass: # We don't want a watcher in single_pass mode because the threads shouldn't run forever
self._watch_thread = Thread(target=self.watch_threads)
self._watch_thread.daemon = True
self._watch_thread.start()
def next_batch(self):
"""Return a Batch from the batch queue.
If mode='decode' then each batch contains a single example repeated beam_size-many times; this is necessary for beam search.
Returns:
batch: a Batch object, or None if we're in single_pass mode and we've exhausted the dataset.
"""
# If the batch queue is empty, print a warning
if self._batch_queue.qsize() == 0:
tf.logging.warning('Bucket input queue is empty when calling next_batch. Bucket queue size: %i, Input queue size: %i', self._batch_queue.qsize(), self._example_queue.qsize())
if self._single_pass and self._finished_reading:
tf.logging.info("Finished reading dataset in single_pass mode.")
return None
batch = self._batch_queue.get() # get the next Batch
return batch
def fill_example_queue(self):
"""Reads data from file and processes into Examples which are then placed into the example queue."""
input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))
while True:
try:
(article, abstract) = input_gen.next() # read the next example from file. article and abstract are both strings.
except StopIteration: # if there are no more examples:
tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
if self._single_pass:
tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
self._finished_reading = True
break
else:
raise Exception("single_pass mode is off but the example generator is out of data; error.")
abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
example = Example(article, abstract_sentences, self._vocab, self._hps) # Process into an Example.
self._example_queue.put(example) # place the Example in the example queue.
def fill_batch_queue(self):
"""Takes Examples out of example queue, sorts them by encoder sequence length, processes into Batches and places them in the batch queue.
In decode mode, makes batches that each contain a single example repeated.
"""
while True:
if self._hps.mode != 'decode':
# Get bucketing_cache_size-many batches of Examples into a list, then sort
inputs = []
for _ in xrange(self._hps.batch_size * self._bucketing_cache_size):
inputs.append(self._example_queue.get())
inputs = sorted(inputs, key=lambda inp: inp.enc_len) # sort by length of encoder sequence
# Group the sorted Examples into batches, optionally shuffle the batches, and place in the batch queue.
batches = []
for i in xrange(0, len(inputs), self._hps.batch_size):
batches.append(inputs[i:i + self._hps.batch_size])
if not self._single_pass:
shuffle(batches)
for b in batches: # each b is a list of Example objects
self._batch_queue.put(Batch(b, self._hps, self._vocab))
else: # beam search decode mode
ex = self._example_queue.get()
b = [ex for _ in xrange(self._hps.batch_size)]
self._batch_queue.put(Batch(b, self._hps, self._vocab))
def watch_threads(self):
"""Watch example queue and batch queue threads and restart if dead."""
while True:
time.sleep(60)
for idx,t in enumerate(self._example_q_threads):
if not t.is_alive(): # if the thread is dead
tf.logging.error('Found example queue thread dead. Restarting.')
new_t = Thread(target=self.fill_example_queue)
self._example_q_threads[idx] = new_t
new_t.daemon = True
new_t.start()
for idx,t in enumerate(self._batch_q_threads):
if not t.is_alive(): # if the thread is dead
tf.logging.error('Found batch queue thread dead. Restarting.')
new_t = Thread(target=self.fill_batch_queue)
self._batch_q_threads[idx] = new_t
new_t.daemon = True
new_t.start()
def text_generator(self, example_generator):
"""Generates article and abstract text from tf.Example.
Args:
example_generator: a generator of tf.Examples from file. See data.example_generator"""
while True:
e = example_generator.next() # e is a tf.Example
try:
article_text = e.features.feature['article'].bytes_list.value[0] # the article text was saved under the key 'article' in the data files
abstract_text = e.features.feature['abstract'].bytes_list.value[0] # the abstract text was saved under the key 'abstract' in the data files
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
if len(article_text)==0: # See https://github.com/abisee/pointer-generator/issues/1
tf.logging.warning('Found an example with empty article text. Skipping it.')
else:
yield (article_text, abstract_text)