-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathmodel.py
76 lines (56 loc) · 2.13 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from __future__ import print_function
from hbconfig import Config
import tensorflow as tf
from tensorflow.contrib import layers
import text_cnn
class Model:
def __init__(self):
pass
def model_fn(self, mode, features, labels, params):
self.dtype = tf.float32
self.mode = mode
self.params = params
self.loss, self.train_op, self.metrics, self.predictions = None, None, None, None
self._init_placeholder(features, labels)
self.build_graph()
# train mode: required loss and train_op
# eval mode: required loss
# predict mode: required predictions
return tf.estimator.EstimatorSpec(
mode=mode,
loss=self.loss,
train_op=self.train_op,
eval_metric_ops=self.metrics,
predictions={"prediction": self.predictions})
def _init_placeholder(self, features, labels):
self.input_data = features
if type(features) == dict:
self.input_data = features["input_data"]
self.targets = labels
def build_graph(self):
graph = text_cnn.Graph(self.mode)
output = graph.build(self.input_data)
self._build_prediction(output)
if self.mode != tf.estimator.ModeKeys.PREDICT:
self._build_loss(output)
self._build_optimizer()
self._build_metric()
def _build_loss(self, output):
self.loss = tf.losses.softmax_cross_entropy(
self.targets,
output,
scope="loss")
def _build_prediction(self, output):
tf.argmax(output[0], name='train/pred_0') # for print_verbose
self.predictions = tf.argmax(output, axis=1)
def _build_optimizer(self):
self.train_op = layers.optimize_loss(
self.loss, tf.train.get_global_step(),
optimizer='Adam',
learning_rate=Config.train.learning_rate,
summaries=['loss', 'learning_rate'],
name="train_op")
def _build_metric(self):
self.metrics = {
"accuracy": tf.metrics.accuracy(tf.argmax(self.targets, axis=1), self.predictions)
}