-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathpredict.py
91 lines (64 loc) · 2.57 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#-*- coding: utf-8 -*-
import argparse
import os
from hbconfig import Config
import numpy as np
import tensorflow as tf
import data_loader
from model import Model
import utils
def main(ids, vocab):
X = np.array(data_loader._pad_input(ids, Config.data.max_seq_length), dtype=np.int32)
X = np.reshape(X, (1, Config.data.max_seq_length))
predict_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"enc_inputs": X},
num_epochs=1,
shuffle=False)
estimator = _make_estimator()
result = estimator.predict(input_fn=predict_input_fn)
prediction = next(result)["prediction"]
rev_vocab = utils.get_rev_vocab(vocab)
def to_str(sequence):
tokens = [
rev_vocab.get(x, '') for x in sequence if x != Config.data.PAD_ID]
return ' '.join(tokens)
return to_str(prediction)
def _make_estimator():
params = tf.contrib.training.HParams(**Config.model.to_dict())
# Using CPU
run_config = tf.contrib.learn.RunConfig(
model_dir=Config.train.model_dir,
session_config=tf.ConfigProto(
device_count={'GPU': 0}
))
model = Model()
return tf.estimator.Estimator(
model_fn=model.model_fn,
model_dir=Config.train.model_dir,
params=params,
config=run_config)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', type=str, default='config',
help='config file name')
parser.add_argument('--src', type=str, default='example source sentence',
help='input source sentence')
args = parser.parse_args()
Config(args.config)
Config.train.batch_size = 1
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.logging.set_verbosity(tf.logging.ERROR)
# set data property
data_loader.set_max_seq_length(['train_ids.enc', 'train_ids.dec', 'test_ids.enc', 'test_ids.dec'])
source_vocab = data_loader.load_vocab("source_vocab")
target_vocab = data_loader.load_vocab("target_vocab")
Config.data.rev_source_vocab = utils.get_rev_vocab(source_vocab)
Config.data.rev_target_vocab = utils.get_rev_vocab(target_vocab)
Config.data.source_vocab_size = len(source_vocab)
Config.data.target_vocab_size = len(target_vocab)
print("------------------------------------")
print("Source: " + args.src)
token_ids = data_loader.sentence2id(source_vocab, args.src)
prediction = main(token_ids, target_vocab)
print(" > Result: " + prediction)