-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_index_html.py
192 lines (181 loc) · 9.17 KB
/
generate_index_html.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import io
import shutil, os
from bokeh.plotting import figure, gridplot
from bokeh.models import Legend
from bokeh.embed import components
from jinja2 import Template
from bokeh.resources import INLINE
import pandas as pd
from bokeh.util.browser import view
dict_csv_files = {
'Cori @ NERSC' : './logs_csv/cori_knl.csv',
'Summit @ OLCF': './logs_csv/summit.csv'
}
dict_hdf5_files = {
'Cori @ NERSC' : './logs_hdf5/cori_results.h5',
'Summit @ OLCF': './logs_hdf5/summit_results.h5'
}
html_file = 'index.html'
# Generate the HTML file
with open('templates/template_index.html') as f:
template = Template(f.read())
with io.open(html_file, 'w', encoding='utf-8') as f:
for machine in list( dict_csv_files.keys() ):
csv_file = dict_csv_files[machine]
df = pd.read_csv( csv_file )
color_list = ('red', 'orange', 'green', 'blue', 'brown', 'gray')
plots = []
#################################################################################
### First part: for a given test, give performance history for several n_node ###
#################################################################################
node_list = [1, 8, 64, 512, 2048, 4096, 8192]
# only keep n_node that are in df
node_list = [ i for i in node_list if i <= df['n_node'].max() ]
# Which quantities to plot on this dataframe
x_axis = 'date'
y_axis = 'step_time'
x_label = x_axis
y_label = y_axis + ' (s)'
# Prepare list of figures
fig_list = []
input_file_list = df['input_file'].unique()
# Loop on input_file, i.e. different tests
# One figure per test
for count, input_file in enumerate( input_file_list ):
if type(input_file) != str:
continue
df_filtered = df[ df['input_file']==input_file ]
y_data_allmax = df_filtered[y_axis].max()
fig = figure(width=250, plot_height=250, title=input_file.replace('automated_test_',''),
x_axis_type="datetime", y_axis_type='log')
# y_range=[0., 1.1*y_data_allmax],
# Ugly trick to have the legend outside the plot.
# The last plot of the line is larger, and a fraction of
# it contains the legend...
if count==len( input_file_list ) - 1: # this is test automated_test_6_output_2ppc
fig = figure(width=390, plot_height=250, title=input_file.replace('automated_test_',''),
x_axis_type="datetime", y_axis_type='log')
# Loop on n_node
# All on the same figure different colors
legend_it = [] # Trick to have legend outside the plot
for inner_count, n_node in enumerate( node_list ):
color = color_list[inner_count]
x_data = pd.to_datetime( df_filtered[df_filtered['n_node']==n_node][x_axis] )
y_data = df_filtered[df_filtered['n_node']==n_node][y_axis]
c = fig.circle(x_data, y_data, size=5, fill_color=color, line_color=color, alpha=.5)
legend_it.append((str(n_node) + ' nodes', [c]))
fig.xaxis.axis_label = x_label
fig.yaxis.axis_label = y_label
fig_list.append( fig )
# For the legend ugly trick
legend = Legend(items=legend_it, location=(0, 0))
legend.click_policy="mute"
fig.add_layout(legend, 'right')
# Store each plot in a 2d, here we chose a single row
pp = gridplot([ fig_list ])
js_resources = INLINE.render_js()
css_resources = INLINE.render_css()
plots = {'myplot': pp}
script, div = components(plots)
html = template.render(js_resources=js_resources,
css_resources=css_resources,
script=script,
myplot=div,
title=machine + ': Performance history for each test')
f.write(html)
################################################################################################
### Second part: for a given test, give the latest weak scaling on up to more that 512 nodes ###
################################################################################################
# Get final run with max nnode >= 512
max_start_date = df[df['n_node']>=2]['start_date'].max()
df_filtered = df[df['start_date']==max_start_date]
# Which quantities to plot on this dataframe
x_axis = 'n_node'
y_axis = 'step_time'
x_label = x_axis
y_label = y_axis + ' (s)'
# Prepare list of figures
fig_list = []
# Loop on input_file, i.e. different tests
# One figure per test
for count, input_file in enumerate( df_filtered['input_file'].unique() ):
color = color_list[count]
x_data = df_filtered[df_filtered['input_file']==input_file][x_axis]
y_data = df_filtered[df_filtered['input_file']==input_file][y_axis]
fig = figure(width=250, plot_height=250, title=input_file.replace('automated_test_',''),
y_range=[0., 1.1*y_data.max()], x_axis_type='log')
# fig = figure(width=250, plot_height=250, title=input_file.replace('automated_test_',''),
# x_axis_type='log', y_axis_type='log')
fig.circle(x_data, y_data, size=5, fill_color=color, line_color=color,
alpha=.5, legend=input_file.replace('automated_test_',''))
fig.xaxis.axis_label = x_label
fig.yaxis.axis_label = y_label
fig_list.append( fig )
fig.legend.location='bottom_right'
# Store each plot in a 2d, here we chose a single row
pp = gridplot([ fig_list ])
js_resources = INLINE.render_js()
css_resources = INLINE.render_css()
plots = {'myplot': pp}
script, div = components(plots)
html = template.render(js_resources=js_resources,
css_resources=css_resources,
script=script,
myplot=div,
title=machine + ': Last weak scaling on up to > 512 nodes :' + df_filtered.iloc[0]['date'])
f.write(html)
#################################################################################
### Third part: for a given test, give performance history for several n_node ###
#################################################################################
# Which quantities to plot on this dataframe
x_axis = 'date'
y_axis = 'step_time'
x_label = x_axis
y_label = y_axis + ' (s)'
# Prepare list of figures
fig_list = []
# Loop on n_node
# One figure per value
for count, n_node in enumerate( node_list ):
df_filtered = df[ df['n_node']==n_node ]
y_data_allmax = df_filtered[y_axis].max()
fig = figure(width=250, plot_height=250, title='n_node = ' + str(n_node),
x_axis_type="datetime", y_axis_type='log')
# y_range=[0., 1.1*y_data_allmax],
# Ugly trick to have the legend outside the plot.
# The last plot of the line is larger, and a fraction of
# it contains the legend...
if count==len( node_list ) - 1:
fig = figure(width=440, plot_height=250, title='n_node = ' + str(n_node),
x_axis_type="datetime", y_axis_type='log')
# y_range=[0., 1.1*y_data_allmax],
# Loop in put_file, i.e. different tests,
# Shown on the same figure with different colors
legend_it = []
for inner_count, input_file in enumerate( df_filtered['input_file'].unique() ):
color = color_list[inner_count]
x_data = pd.to_datetime( df_filtered[df_filtered['input_file']==input_file][x_axis] )
y_data = df_filtered[df_filtered['input_file']==input_file][y_axis]
c = fig.circle(x_data, y_data, size=5, fill_color=color, line_color=color,
alpha=.5)
legend_it.append((input_file.replace('automated_test_',''), [c]))
fig.xaxis.axis_label = x_label
fig.yaxis.axis_label = y_label
fig_list.append( fig )
# For the legend ugly trick
legend = Legend(items=legend_it, location=(0, 0))
legend.click_policy="mute"
fig.add_layout(legend, 'right')
# Store each plot in a 2d, here we chose a single row
pp = gridplot([ fig_list ])
js_resources = INLINE.render_js()
css_resources = INLINE.render_css()
plots = {'myplot': pp}
script, div = components(plots)
# html = template.render(L=plots)
html = template.render(js_resources=js_resources,
css_resources=css_resources,
script=script,
myplot=div,
title=machine + ': Performance history for each number of node')
f.write(html)