-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
238 lines (197 loc) · 10.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os, sys, time, torch, math, numpy as np, cv2, collections
import torch.nn as nn
import torch.nn.functional as F
################################### - classes
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class HeatMap(torch.nn.Module):
"""Defines a differentiable Gaussian heatmap"""
def __init__(self, out_res, sigma=0.5):
super(HeatMap, self).__init__()
self.sigma = sigma
print('The size of heatmap is {:f}'.format(self.sigma))
y,x = torch.meshgrid([torch.arange(0,out_res).float(), torch.arange(0,out_res).float()])
self.x = x
self.y = y
self.out_res = out_res
def forward(self, pts):
bSize, nPts = pts.size(0), pts.size(1)
x = self.x.repeat(bSize,nPts,1,1)
y = self.y.repeat(bSize,nPts,1,1)
xscore = torch.unsqueeze(torch.unsqueeze(pts[:,:,0], 2),3)
yscore = torch.unsqueeze(torch.unsqueeze(pts[:,:,1], 2),3)
xscore = xscore - x.to(xscore.device)
yscore = yscore - y.to(yscore.device)
hms = -(xscore**2 + yscore**2)
hms = torch.exp(hms/self.sigma)
return hms
class SoftArgmax2D(torch.nn.Module):
""" Implementation of a 2d soft arg-max function as an nn.Module, so that we can differentiate through arg-max operations."""
def __init__(self, base_index=0, step_size=1, softmax_temp=1.0):
super(SoftArgmax2D, self).__init__()
self.base_index = base_index
self.step_size = step_size
self.softmax = torch.nn.Softmax(dim=2)
self.softmax_temp = softmax_temp
def _softmax_2d(self, x, temp):
B, C, W, H = x.size()
x_flat = x.view((B, C, W*H)) / temp
x_softmax = self.softmax(x_flat)
return x_softmax.view((B, C, W, H))
def forward(self, x):
batch_size, channels, height, width = x.size()
smax = self._softmax_2d(x, self.softmax_temp)# * windows
smax = smax / torch.sum(smax.view(batch_size, channels, -1), dim=2).view(batch_size,channels,1,1)
# compute x index (sum over y axis, produce with indices and then sum over x axis for the expectation)
x_end_index = self.base_index + width * self.step_size
x_indices = torch.arange(start=self.base_index, end=x_end_index, step=self.step_size).float().cuda()
x_coords = torch.sum(torch.sum(smax, 2) * x_indices, 2)
# compute y index (sum over x axis, produce with indices and then sum over y axis for the expectation)
y_end_index = self.base_index + height * self.step_size
y_indices = torch.arange(start=self.base_index, end=y_end_index, step=self.step_size).float().cuda()
y_coords = torch.sum(torch.sum(smax, 3) * y_indices, 2)
return torch.cat([torch.unsqueeze(x_coords, 2), torch.unsqueeze(y_coords, 2)], dim=2)
class LossNetwork(torch.nn.Module):
def __init__(self, vgg_model):
super(LossNetwork, self).__init__()
self.LossOutput = collections.namedtuple("LossOutput", ["relu1_2", "relu2_2", "relu3_3", "relu4_3"])
self.vgg_layers = vgg_model.features if hasattr(vgg_model,'features') else vgg_model.module.features #### to allow use in DataParallel
self.layer_name_mapping = {
'3': "relu1_2",
'8': "relu2_2",
'15': "relu3_3",
'22': "relu4_3"
}
def forward(self, x):
output = {}
for name, module in self.vgg_layers._modules.items():
x = module(x)
if name in self.layer_name_mapping:
output[self.layer_name_mapping[name]] = x
return self.LossOutput(**output)
################################ functions
def process_image(image,points,angle=0, flip=False, sigma=1,size=128, tight=16, hmsize=64):
output = dict.fromkeys(['image','points','M'])
if angle > 0:
tmp_angle = np.clip(np.random.randn(1) * angle, -40.0, 40.0)
image,points,M = affine_trans(image,points, tmp_angle)
output['M'] = M
tight = int(tight + 4*np.random.randn())
image, points = crop( image , points, size, tight )
if flip:
image = cv2.flip(image, 1)
image = image/255.0
image = torch.from_numpy(image.swapaxes(2,1).swapaxes(1,0))
output['image'] = image.type_as(torch.FloatTensor())
output['points'] = np.floor(points)
return output
def crop( image, landmarks , size, tight=8):
delta_x = np.max(landmarks[:,0]) - np.min(landmarks[:,0])
delta_y = np.max(landmarks[:,1]) - np.min(landmarks[:,1])
delta = 0.5*(delta_x + delta_y)
if delta < 20:
tight_aux = 8
else:
tight_aux = int(tight * delta/100)
pts_ = landmarks.copy()
w = image.shape[1]
h = image.shape[0]
min_x = int(np.maximum( np.round( np.min(landmarks[:,0]) ) - tight_aux , 0 ))
min_y = int(np.maximum( np.round( np.min(landmarks[:,1]) ) - tight_aux , 0 ))
max_x = int(np.minimum( np.round( np.max(landmarks[:,0]) ) + tight_aux , w-1 ))
max_y = int(np.minimum( np.round( np.max(landmarks[:,1]) ) + tight_aux , h-1 ))
image = image[min_y:max_y,min_x:max_x,:]
pts_[:,0] = pts_[:,0] - min_x
pts_[:,1] = pts_[:,1] - min_y
sw = size/image.shape[1]
sh = size/image.shape[0]
im = cv2.resize(image, dsize=(size,size),
interpolation=cv2.INTER_LINEAR)
pts_[:,0] = pts_[:,0]*sw
pts_[:,1] = pts_[:,1]*sh
return im, pts_
def affine_trans(image,landmarks,angle=None,size=None):
if angle is None:
angle = 30*torch.randn(1)
(h, w) = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
dst = cv2.warpAffine(image, M, (nW,nH),borderMode=cv2.BORDER_REPLICATE)
#print(landmarks.shape)
new_landmarks = np.concatenate((landmarks,np.ones((landmarks.shape[0],1))),axis=1)
if size is not None:
sw = size/nW
sh = size/nH
dst = cv2.resize(dst, dsize=(size,size),
interpolation=cv2.INTER_LINEAR)
M = [[sw,0],[0,sh]] @ M
new_landmarks = new_landmarks.dot(M.transpose())
return dst, new_landmarks, M
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
torch.nn.init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
torch.nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
torch.nn.init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, gain)
torch.nn.init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
############################# - Visualisation utils
def savetorchimg(name,img):
cv2.imwrite(name, cv2.cvtColor((255*img.permute(1,2,0).numpy()).astype(np.uint8) , cv2.COLOR_RGB2BGR))
def savetorchimgandpts(name,img,x,y=None):
improc = (255*img.permute(1,2,0).numpy()).astype(np.uint8).copy()
for m in range(0,x.shape[0]):
cv2.circle(improc, (int(x[m,0]), int(x[m,1])), 2, (255,0,0),-1)
if y is not None:
for m in range(0,y.shape[0]):
cv2.circle(improc, (int(y[m,0]), int(y[m,1])), 2, (0,255,0),-1)
cv2.imwrite(name, cv2.cvtColor( improc , cv2.COLOR_RGB2BGR))
def saveheatmap(name,img):
improc = cv2.applyColorMap( (255*img.permute(1,2,0).numpy()).astype(np.uint8), cv2.COLORMAP_JET)
cv2.imwrite(name, cv2.cvtColor( improc , cv2.COLOR_RGB2BGR))
def savetorchimgandptsv2(name,img,x,thick=2,mSize=4): # to use different colours
improc = (255*img.permute(1,2,0).numpy()).astype(np.uint8).copy()
cv2.drawMarker(improc, (int(x[0,0]), int(x[0,1])), (255,0,0), markerType=cv2.MARKER_TILTED_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[1,0]), int(x[1,1])), (0,255,0), markerType=cv2.MARKER_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[2,0]), int(x[2,1])), (0,0,255), markerType=cv2.MARKER_TILTED_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[3,0]), int(x[3,1])), (0,0,0), markerType=cv2.MARKER_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[4,0]), int(x[4,1])), (255,255,255), markerType=cv2.MARKER_TILTED_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[5,0]), int(x[5,1])), (255,255,0), markerType=cv2.MARKER_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[6,0]), int(x[6,1])), (255,0,255), markerType=cv2.MARKER_TILTED_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[7,0]), int(x[7,1])), (0,255,255), markerType=cv2.MARKER_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[8,0]), int(x[8,1])), (255,128,0), markerType=cv2.MARKER_TILTED_CROSS, markerSize=mSize, thickness=thick)
cv2.drawMarker(improc, (int(x[9,0]), int(x[9,1])), (0,0,128), markerType=cv2.MARKER_CROSS, markerSize=mSize, thickness=thick)
cv2.imwrite(name, cv2.cvtColor( improc , cv2.COLOR_RGB2BGR))