This repository has been archived by the owner on Feb 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathept_converter.py
234 lines (211 loc) · 7.66 KB
/
ept_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import settings
import glob
import h5py
import icepyx as ipx
import json
import math
import multiprocessing
import os
import re
import sys
import time
import tqdm
STANDARD_DIMENSIONS_VALUES = [
## (Standard Dimension, Path End)
("X", "longitude"),
("Y", "latitude"),
("Z", "h_li"),
("GpsTime", "delta_time"),
]
CUSTOM_DIMENSIONS_VALUES = [
## (Custom Dimension, Path End, Value Type)
("atl06_quality_summary", "atl06_quality_summary", "int8"),
("h_li_sigma", "h_li_sigma", "float32"),
("segment_id", "segment_id", "int32"),
("sigma_geo_h", "sigma_geo_h", "float32")
]
CUSTOM_FILE_DIMENSIONS = [
# (Dimension Name, Path, Value Type)
('CycleNumber', 'orbit_info/cycle_number', "int8"),
]
CUSTOM_AUX_DIMENSIONS = [
# (Dimension Name, N/A, Value Type)
# This is for dimensions that are added that are not represented
# in the file itself.
('GranuleId', None, "int32"),
]
FILTER_STAGE = {
"type":"filters.range",
"limits":"Z[0:100000]",
}
REPROJECTION_STAGE = {
"type":"filters.reprojection",
"in_srs":"EPSG:4326",
"out_srs":"EPSG:32757",
}
BEAMS = ['gt1l', 'gt1r', 'gt2l', 'gt2r', 'gt3l', 'gt3r']
def full_run(path):
start_time = time.time()
get_files(path)
sort_files(path)
process_cycles(path)
print ('Full Run Time:', time.time() - start_time)
def get_files(path):
SHORT_NAME = 'ATL06'
region = ipx.core.query.Query(SHORT_NAME, settings.SPATIAL_EXTENT, settings.DATE_RANGE)
region.earthdata_login(settings.EARTHDATA_UID, settings.EARTHDATA_EMAIL)
region.order_granules(email=False)
region.download_granules(path)
def sort_files(base_dir):
files = glob.glob(base_dir + '/*h5')
for file_path in tqdm.tqdm(files):
file_name = os.path.basename(file_path)
f = h5py.File(file_path, 'r')
cycle_number = f['orbit_info/cycle_number'][0]
output_dir = os.path.join(base_dir, str(cycle_number))
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
os.rename(file_path, os.path.join(output_dir, file_name))
def process_cycles(base_dir):
for cycle_dir in glob.glob(os.path.join(base_dir, '*/')):
print ("Working on: " + cycle_dir)
output_dir = process_raw_files_to_laz(cycle_dir)
entwine_build(output_dir)
def process_raw_files_to_laz(base_dir):
start_time = time.time()
## Create Output Folder if it doesn't already exists
output_dir = os.path.join(base_dir, 'output')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
#pool = multiprocessing.Pool()
files = glob.glob(base_dir + '/*h5')
for file_path in tqdm.tqdm(files):
#pool.apply_async(convert_file, (base_dir, output_dir, file_path))
convert_file(file_path, base_dir, output_dir)
print ('LAZ Conversion Time: ', time.time() - start_time)
return output_dir
def convert_file(file_path, base_dir, output_dir):
base_command = "sudo docker run --rm -it -v '{base_dir}:{base_dir}' pdal/pdal pdal pipeline ".format(**{'base_dir': base_dir})
file, extension = os.path.splitext(file_path)
input_file = file_path
base_filename = file.split('/')[-1]
output_file = '%s/%s.laz' % (output_dir, base_filename)
pipeline = build_laz_conversion_pipeline(input_file, output_file)
pipeline_path = os.path.join(output_dir, base_filename + '.json' )
with open(pipeline_path, 'w') as pipeline_file:
json.dump(pipeline, pipeline_file)
command = base_command + pipeline_path
os.system(command)
os.remove(pipeline_path)
def build_laz_conversion_pipeline(input_file, output_file):
pipeline = []
file_id = get_granule_id(input_file)
f = h5py.File(input_file, 'r')
beam_id = 0
beam_name_stages = []
for beam in BEAMS:
base_path = "%s/land_ice_segments/" % beam
stage = {
"type": "readers.hdf",
"filename": input_file,
"dimensions": {},
"tag": beam
}
for key, value in STANDARD_DIMENSIONS_VALUES:
stage["dimensions"][key] = base_path + value
for key, value, value_type in CUSTOM_DIMENSIONS_VALUES:
stage["dimensions"][key] = base_path + value
pipeline.append(stage)
dim_stage = {
"type": "filters.ferry",
"inputs": [beam],
"dimensions": "=>GranuleId,=>ReturnNumber,=>CycleNumber",
"tag": beam + "_dim"
}
pipeline.append(dim_stage)
beam_name_stage = {
"type": "filters.assign",
"inputs": [beam + "_dim"],
"assignment": "ReturnNumber[:]=%s" % beam_id,
"tag": beam + "_id_stage"
}
pipeline.append(beam_name_stage)
beam_id += 1
GRANULE_ID_STAGE = {
"type": "filters.assign",
"inputs": [beam + "_id_stage" for beam in BEAMS],
"assignment": "GranuleId[:]=%s" % file_id,
}
pipeline.append(GRANULE_ID_STAGE)
for key, value, vt in CUSTOM_FILE_DIMENSIONS:
custom_file_stage = {
"type": "filters.assign",
"assignment": "%s[:]=%s" % (key, f[value][0])
}
pipeline.append(custom_file_stage)
pipeline.append(FILTER_STAGE)
#pipeline.append(REPROJECTION_STAGE)
extra_dims = (', ').join('%s=%s' % (key, value_type) for key, value, value_type in CUSTOM_DIMENSIONS_VALUES + CUSTOM_FILE_DIMENSIONS + CUSTOM_AUX_DIMENSIONS)
writer_stage = {
"type" : "writers.las",
"filename": output_file,
"compression":"laszip",
"minor_version" : "4",
"extra_dims": extra_dims,
}
pipeline.append(writer_stage)
return pipeline
def entwine_build(base_dir):
stages = get_stages(settings.STAGES)
start_time = time.time()
num_cores = multiprocessing.cpu_count()
output_path = os.path.join(base_dir, 'entwine')
check_dir(output_path)
processed_path = os.path.join(base_dir, 'processed')
check_dir(processed_path)
string_dict = {
'base_dir': base_dir,
'output_path': output_path,
'processed_path': processed_path,
'total_stages': stages,
'num_cores': num_cores,
}
base_command = "sudo docker run --rm -it -v '{base_dir}:{base_dir}' connormanning/entwine build --threads {num_cores} {stages_string} -i {base_dir} -o {output_path}"
string_dict["stages_string"] = ""
if stages > 1:
stages_string = "-s {current_stage} {total_stages}"
for i in range(1, stages+1):
string_dict['stages_string'] = stages_string.format(**{'current_stage': i, 'total_stages': stages})
command = base_command.format(**string_dict)
os.system(command)
merge_command = "sudo docker run --rm -it -v '{base_dir}:{base_dir}' connormanning/entwine merge {output_path}"
command = merge_command.format(**string_dict)
else:
command = base_command.format(**string_dict)
os.system(command)
# Move all files
os.system("mv {base_dir}/*.laz {processed_path}".format(**string_dict))
print ('Entwine Build Time: ', time.time() - start_time)
def get_stages(num_cores):
# Get the maximum number of stages to kick off.
# Number of stages must be a power of 4.
n = 1
while math.pow(4, n) <= num_cores:
n += 1
return int(math.pow(4, n-1))
def check_dir(path):
if not os.path.isdir(path):
os.mkdir(path)
def get_granule_id(input_file):
try:
basename = os.path.basename(input_file)
re_search = re.search("_[0-9]{8}_", basename)
return int(basename[re_search.start()+1:re_search.end()-1])
except:
return 0
def cli():
path = sys.argv[1]
print('Storing output: ' + path)
full_run(path)
if __name__ == "__main__":
cli()