-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharith64.c
290 lines (252 loc) · 9.13 KB
/
arith64.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*
This file is part of Fennix C Library.
Fennix C Library is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Fennix C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Fennix C Library. If not, see <https://www.gnu.org/licenses/>.
*/
#if defined(__amd64__) || defined(__i386__)
// GCC 32/64-bit integer arithmetic support for 32-bit systems that can't link
// to libgcc.
// Function prototypes and descriptions are taken from
// https://gcc.gnu.org/onlinedocs/gccint/Integer-library-routines.html.
// This file may be #include'd by another file, so we try not to pollute the
// namespace and we don't import any headers.
// All functions must be resolvable by the linker and therefore can't be inline
// or static, even if they're #included into the file where they'll be used.
// For best performance we try to avoid branching. This makes the code a little
// weird in places.
// See https://github.com/glitchub/arith64 for more information.
// This software is released as-is into the public domain, as described at
// https://unlicense.org. Do whatever you like with it.
#define arith64_u64 unsigned long long int
#define arith64_s64 signed long long int
#define arith64_u32 unsigned int
#define arith64_s32 int
typedef union
{
arith64_u64 u64;
arith64_s64 s64;
struct
{
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
arith64_u32 hi; arith64_u32 lo;
#else
arith64_u32 lo; arith64_u32 hi;
#endif
} u32;
struct
{
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
arith64_s32 hi; arith64_s32 lo;
#else
arith64_s32 lo; arith64_s32 hi;
#endif
} s32;
} arith64_word;
// extract hi and lo 32-bit words from 64-bit value
#define arith64_hi(n) (arith64_word){.u64=n}.u32.hi
#define arith64_lo(n) (arith64_word){.u64=n}.u32.lo
// Negate a if b is negative, via invert and increment.
#define arith64_neg(a, b) (((a) ^ ((((arith64_s64)(b)) >= 0) - 1)) + (((arith64_s64)(b)) < 0))
#define arith64_abs(a) arith64_neg(a, a)
// Return the absolute value of a.
// Note LLINT_MIN cannot be negated.
arith64_s64 __absvdi2(arith64_s64 a)
{
return arith64_abs(a);
}
// Return the result of shifting a left by b bits.
arith64_s64 __ashldi3(arith64_s64 a, int b)
{
arith64_word w = {.s64 = a};
b &= 63;
if (b >= 32)
{
w.u32.hi = w.u32.lo << (b - 32);
w.u32.lo = 0;
} else if (b)
{
w.u32.hi = (w.u32.lo >> (32 - b)) | (w.u32.hi << b);
w.u32.lo <<= b;
}
return w.s64;
}
// Return the result of arithmetically shifting a right by b bits.
arith64_s64 __ashrdi3(arith64_s64 a, int b)
{
arith64_word w = {.s64 = a};
b &= 63;
if (b >= 32)
{
w.s32.lo = w.s32.hi >> (b - 32);
w.s32.hi >>= 31; // 0xFFFFFFFF or 0
} else if (b)
{
w.u32.lo = (w.u32.hi << (32 - b)) | (w.u32.lo >> b);
w.s32.hi >>= b;
}
return w.s64;
}
// These functions return the number of leading 0-bits in a, starting at the
// most significant bit position. If a is zero, the result is undefined.
int __clzsi2(arith64_u32 a)
{
int b, n = 0;
b = !(a & 0xffff0000) << 4; n += b; a <<= b;
b = !(a & 0xff000000) << 3; n += b; a <<= b;
b = !(a & 0xf0000000) << 2; n += b; a <<= b;
b = !(a & 0xc0000000) << 1; n += b; a <<= b;
return n + !(a & 0x80000000);
}
int __clzdi2(arith64_u64 a)
{
int b, n = 0;
b = !(a & 0xffffffff00000000ULL) << 5; n += b; a <<= b;
b = !(a & 0xffff000000000000ULL) << 4; n += b; a <<= b;
b = !(a & 0xff00000000000000ULL) << 3; n += b; a <<= b;
b = !(a & 0xf000000000000000ULL) << 2; n += b; a <<= b;
b = !(a & 0xc000000000000000ULL) << 1; n += b; a <<= b;
return n + !(a & 0x8000000000000000ULL);
}
// These functions return the number of trailing 0-bits in a, starting at the
// least significant bit position. If a is zero, the result is undefined.
int __ctzsi2(arith64_u32 a)
{
int b, n = 0;
b = !(a & 0x0000ffff) << 4; n += b; a >>= b;
b = !(a & 0x000000ff) << 3; n += b; a >>= b;
b = !(a & 0x0000000f) << 2; n += b; a >>= b;
b = !(a & 0x00000003) << 1; n += b; a >>= b;
return n + !(a & 0x00000001);
}
int __ctzdi2(arith64_u64 a)
{
int b, n = 0;
b = !(a & 0x00000000ffffffffULL) << 5; n += b; a >>= b;
b = !(a & 0x000000000000ffffULL) << 4; n += b; a >>= b;
b = !(a & 0x00000000000000ffULL) << 3; n += b; a >>= b;
b = !(a & 0x000000000000000fULL) << 2; n += b; a >>= b;
b = !(a & 0x0000000000000003ULL) << 1; n += b; a >>= b;
return n + !(a & 0x0000000000000001ULL);
}
// Calculate both the quotient and remainder of the unsigned division of a by
// b. The return value is the quotient, and the remainder is placed in variable
// pointed to by c (if it's not NULL).
arith64_u64 __divmoddi4(arith64_u64 a, arith64_u64 b, arith64_u64 *c)
{
if (b > a) // divisor > numerator?
{
if (c) *c = a; // remainder = numerator
return 0; // quotient = 0
}
if (!arith64_hi(b)) // divisor is 32-bit
{
if (b == 0) // divide by 0
{
volatile char x = 0; x = 1 / x; // force an exception
}
if (b == 1) // divide by 1
{
if (c) *c = 0; // remainder = 0
return a; // quotient = numerator
}
if (!arith64_hi(a)) // numerator is also 32-bit
{
if (c) // use generic 32-bit operators
*c = arith64_lo(a) % arith64_lo(b);
return arith64_lo(a) / arith64_lo(b);
}
}
// let's do long division
char bits = __clzdi2(b) - __clzdi2(a) + 1; // number of bits to iterate (a and b are non-zero)
arith64_u64 rem = a >> bits; // init remainder
a <<= 64 - bits; // shift numerator to the high bit
arith64_u64 wrap = 0; // start with wrap = 0
while (bits-- > 0) // for each bit
{
rem = (rem << 1) | (a >> 63); // shift numerator MSB to remainder LSB
a = (a << 1) | (wrap & 1); // shift out the numerator, shift in wrap
wrap = ((arith64_s64)(b - rem - 1) >> 63); // wrap = (b > rem) ? 0 : 0xffffffffffffffff (via sign extension)
rem -= b & wrap; // if (wrap) rem -= b
}
if (c) *c = rem; // maybe set remainder
return (a << 1) | (wrap & 1); // return the quotient
}
// Return the quotient of the signed division of a by b.
arith64_s64 __divdi3(arith64_s64 a, arith64_s64 b)
{
arith64_u64 q = __divmoddi4(arith64_abs(a), arith64_abs(b), (void *)0);
return arith64_neg(q, a^b); // negate q if a and b signs are different
}
// Return the index of the least significant 1-bit in a, or the value zero if a
// is zero. The least significant bit is index one.
int __ffsdi2(arith64_u64 a)
{
return a ? __ctzdi2(a) + 1 : 0;
}
// Return the result of logically shifting a right by b bits.
arith64_u64 __lshrdi3(arith64_u64 a, int b)
{
arith64_word w = {.u64 = a};
b &= 63;
if (b >= 32)
{
w.u32.lo = w.u32.hi >> (b - 32);
w.u32.hi = 0;
} else if (b)
{
w.u32.lo = (w.u32.hi << (32 - b)) | (w.u32.lo >> b);
w.u32.hi >>= b;
}
return w.u64;
}
// Return the remainder of the signed division of a by b.
arith64_s64 __moddi3(arith64_s64 a, arith64_s64 b)
{
arith64_u64 r;
__divmoddi4(arith64_abs(a), arith64_abs(b), &r);
return arith64_neg(r, a); // negate remainder if numerator is negative
}
// Return the number of bits set in a.
int __popcountsi2(arith64_u32 a)
{
// collect sums into two low bytes
a = a - ((a >> 1) & 0x55555555);
a = ((a >> 2) & 0x33333333) + (a & 0x33333333);
a = (a + (a >> 4)) & 0x0F0F0F0F;
a = (a + (a >> 16));
// add the bytes, return bottom 6 bits
return (a + (a >> 8)) & 63;
}
// Return the number of bits set in a.
int __popcountdi2(arith64_u64 a)
{
// collect sums into two low bytes
a = a - ((a >> 1) & 0x5555555555555555ULL);
a = ((a >> 2) & 0x3333333333333333ULL) + (a & 0x3333333333333333ULL);
a = (a + (a >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
a = (a + (a >> 32));
a = (a + (a >> 16));
// add the bytes, return bottom 7 bits
return (a + (a >> 8)) & 127;
}
// Return the quotient of the unsigned division of a by b.
arith64_u64 __udivdi3(arith64_u64 a, arith64_u64 b)
{
return __divmoddi4(a, b, (void *)0);
}
// Return the remainder of the unsigned division of a by b.
arith64_u64 __umoddi3(arith64_u64 a, arith64_u64 b)
{
arith64_u64 r;
__divmoddi4(a, b, &r);
return r;
}
#endif