-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_u2.py
49 lines (32 loc) · 1.81 KB
/
model_u2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, BatchNormalization, Dropout
from keras import regularizers
def create_binary_classification_model(input_shape):
# Create a sequential model
model = Sequential()
# BLOCK 1 Add the first convolutional layer with L1 regularization, 32 filters, a 5x5 kernel, and 'relu' activation
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=input_shape,
kernel_regularizer=regularizers.l1(0.0001)))
#model.add(BatchNormalization())
model.add(Conv2D(32, (5, 5), activation='relu', kernel_regularizer=regularizers.l1(0.0001)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
# BLOCK 2 Add a second convolutional layer with L1 regularization, 64 filters, a 3x3 kernel, and 'relu' activation
model.add(Conv2D(64, (3, 3), activation='relu',
kernel_regularizer=regularizers.l1(0.0001)))
#model.add(BatchNormalization())
model.add(Conv2D(64, (3, 3), activation='relu', kernel_regularizer=regularizers.l1(0.0001)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
# Flatten the output from the previous layer
model.add(Flatten())
# Add a fully connected layer with L2 regularization, 128 units, 'relu' activation, and dropout
model.add(Dense(128, activation='relu',
kernel_regularizer=regularizers.l1(0.0001)))
#model.add(BatchNormalization())
#model.add(Dropout(0.2))
# Add the output layer with 1 unit and sigmoid activation for binary classification
model.add(Dense(1, activation='sigmoid'))
# Compile the model
#model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model