-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathmakeTrainTestfiles.py
33 lines (30 loc) · 958 Bytes
/
makeTrainTestfiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
"""
makeTrainTestfiles.py
---------------
Split the train/test images with a simple 80/20 split
Write the train/test image directories in train.txt and test.txt,
"""
import numpy as np
import cv2
import glob
import os
from config.registrationParameters import *
folders = glob.glob("LINEMOD/*/")
for classlabel,folder in enumerate(folders):
print(folder)
try:
transforms_file = folder + 'transforms.npy'
transforms = np.load(transforms_file)
filetrain = open(folder+"train.txt","w")
filetest = open(folder+"test.txt","w")
for i in range(len(transforms)):
message = "LINEMOD/" + folder[8:-1] + "/JPEGImages/" + str(i*LABEL_INTERVAL) + ".jpg" + "\n"
# train on every 5th of the image
if i%5 == 0:
filetrain.write(message)
else:
filetest.write(message)
filetrain.close()
filetest.close()
except:
pass