-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
127 lines (106 loc) · 5.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import glob
import matplotlib
from tensorflow.keras.optimizers.schedules import CosineDecayRestarts
from keras.callbacks import LearningRateScheduler, TensorBoard
from keras.optimizers import Adam, SGD
from utils import load_img, load_masks, save_best_model, scheduler, CustomGenerator, plot_3d, loss_gt, dice_coefficient
from utils import plot_overlay, inference, multi_slice_viewer, resample
from model import unet, unet3d
import os
import datetime
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
if __name__ == '__main__':
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # To disable tensorflow logs
# ---------------------- Configs ----------------------
train = True
test = False
roi = (256, 256, 256)
roi_3d = (64, 64, 64, 1)
learning_rate = 0.1
num_patch = 2
batch_size = 1
model3d = False
preprocess = True
resampling = False # apply resampling on images
epochs = 2
scheduler_type = 'linear' # 'CosineDecay' or 'linear'
decay_steps = 7 # In Cosine decay learning rate scheduler: number of steps to decay over
alpha = 0.01 # minimum learning rate value= alpha * learning rate
pretrained = False
save_path = 'models/best2'
load_path = 'models/best2'
train_size = 0.8
# ----------------- Create data paths -----------------
address = '.\\Behrad'
image_pattern = address + '/*/DICOM/*.pickle'
mask_pattern = address + '/*/Airway_mask/*.npz'
img_paths = glob.glob(image_pattern)
mask_paths = glob.glob(mask_pattern)
if train:
# ----------------- Define checkpoints ------------------
checkpoint_best = save_best_model(save_path)
if scheduler_type == 'linear':
reduce_lr = LearningRateScheduler(scheduler)
else:
reduce_lr = LearningRateScheduler(
CosineDecayRestarts(initial_learning_rate=learning_rate, alpha=alpha, first_decay_steps=decay_steps))
log_dir = "logs/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=1)
# -------------------- Define models --------------------
if model3d:
model = unet3d(input_size=roi_3d)
else:
model = unet(input_size=roi)
model.compile(optimizer=Adam(learning_rate=learning_rate), loss=[loss_gt()], metrics=[dice_coefficient])
if pretrained:
model.load_weights(load_path)
# model.summary()
# -------------------- Start training --------------------
X_train, X_rem, y_train, y_rem = train_test_split(img_paths, mask_paths, train_size=train_size)
X_valid, X_test, y_valid, y_test = train_test_split(X_rem, y_rem, test_size=0.5)
generator = CustomGenerator(X_train, y_train, batch_size=batch_size, size=roi[0], num_patch=num_patch,
model3d=model3d, preprocess=preprocess, resampling=resampling)
validation_generator = CustomGenerator(X_valid, y_valid, batch_size=batch_size, size=roi[0],
num_patch=num_patch, model3d=model3d, preprocess=preprocess,
resampling=resampling)
test_generator = CustomGenerator(X_test, y_test, batch_size=batch_size, size=roi[0], num_patch=num_patch,
model3d=model3d, preprocess=preprocess, resampling=resampling)
history = model.fit(generator, validation_data=validation_generator, steps_per_epoch=int(len(X_train)),
epochs=epochs, verbose=1, callbacks=[checkpoint_best, reduce_lr,
tensorboard_callback])
score = model.evaluate(test_generator, batch_size=batch_size, callbacks=tensorboard_callback)
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.tight_layout(pad=3.0)
ax1.plot(history.history['dice_coefficient'])
ax1.plot(history.history['val_dice_coefficient'])
ax1.set_title('Model dice')
ax1.set(xlabel='epoch', ylabel='dice')
ax2.plot(history.history['loss'])
ax2.plot(history.history['val_loss'])
ax2.set_title('Model loss')
ax2.set(xlabel='epoch', ylabel='loss')
ax1.legend(['train', 'val'], loc='upper left')
ax2.legend(['train', 'val'], loc='upper left')
text = f'Test set: Dice: {score[1]:.3f} , loss: {score[0]:.3f}'
plt.figtext(0.5, 0, text, wrap=True, horizontalalignment='center', fontsize=10)
plt.savefig('performance.png')
plt.show()
elif test:
# -------------------- Load model and predict mask -------------------
model = unet(input_size=roi)
model.load_weights(load_path).expect_partial()
# -------------------- Read image and add padding --------------------
img, spacing = load_img(img_paths[7], preprocess)
ground_truth = load_masks(mask_paths[7])
if resampling:
# resample images and masks to have a standard size of 1*1*1
img = resample(img, spacing)
mask = resample(ground_truth, spacing)
mask = inference(model, img, roi)
# interactive plot
matplotlib.use('TkAgg')
multi_slice_viewer(2, img, ground_truth, mask)
plt.show(block=True)
# plot_overlay(img, mask, ground_truth, axis=2, slice=922)
# plot_3d(mask)