A simple reid baseline
Unfinished work
The codes are expanded on
- ReID-baseline by Luo & Liao
- open-reid by Cysu
- powerful-benchmarker by KevinMusgrave
- Pytorch(1.6.0)
- pytorch-metric-learning
The structure of the reid is shown below
- reid
- Datasets
- datamanager.py
- dataloader.py
- eval
- ranking.py
- rerank.py
- log
- baseline-checkpoint-log
- ...
- loss_func
- softmax.py
- trihard.py
- arcface.py
- cosface.py
- normface.py
- ...
- metric_learning
- euclidean_dist.py
- cos_dist.py
- jaccard_dist.py
- models
- activation
- attention
- conv
- pool
- transform
- backbone
- resnet50.py
- resnet101.py
- resnext.py
- mobilenet.py
- mudeep.py
- ...
- optim
- SGD.py
- adam.py
- ...
- utils
- dataset
- datasets.py
- optimizer.py
- sampler.py
- transform.py
- preprocessor.py
- logger.py
- meter.py
- osutils.py
- serialization.py
- Visualization
- trainer.py
- tester.py
- main.py