-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlosses.py
228 lines (189 loc) · 7.49 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from __future__ import absolute_import
import sys
import torch
from torch import nn
from torch import Tensor
import torch.nn.functional as F
from typing import Tuple
"""
Shorthands for loss:
- CrossEntropyLabelSmooth: xent
- TripletLoss: htri
- CenterLoss: cent
"""
__all__ = ['DeepSupervision', 'CrossEntropyLabelSmooth', 'TripletLoss', 'CenterLoss', 'RingLoss']
def DeepSupervision(criterion, xs, y):
"""
Args:
criterion: loss function
xs: tuple of inputs
y: ground truth
"""
loss = 0.
for x in xs:
loss += criterion(x, y)
return loss
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1)
if self.use_gpu: targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (- targets * log_probs).mean(0).sum()
return loss
class TripletLoss(nn.Module):
"""Triplet loss with hard positive/negative mining.
Reference:
Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.
Args:
margin (float): margin for triplet.
"""
def __init__(self, margin=0.3):
super(TripletLoss, self).__init__()
self.margin = margin
self.ranking_loss = nn.MarginRankingLoss(margin=margin)
def forward(self, inputs, targets):
"""
Args:
inputs: feature matrix with shape (batch_size, feat_dim)
targets: ground truth labels with shape (num_classes)
"""
n = inputs.size(0)
# Compute pairwise distance, replace by the official when merged
dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)
dist = dist + dist.t()
dist.addmm_(1, -2, inputs, inputs.t())
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
# For each anchor, find the hardest positive and negative
mask = targets.expand(n, n).eq(targets.expand(n, n).t())
dist_ap, dist_an = [], []
for i in range(n):
dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))
dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0))
dist_ap = torch.cat(dist_ap)
dist_an = torch.cat(dist_an)
# Compute ranking hinge loss
y = torch.ones_like(dist_an)
loss = self.ranking_loss(dist_an, dist_ap, y)
return loss
class CenterLoss(nn.Module):
"""Center loss.
Reference:
Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
Args:
num_classes (int): number of classes.
feat_dim (int): feature dimension.
"""
def __init__(self, num_classes=10, feat_dim=2, use_gpu=True):
super(CenterLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.use_gpu = use_gpu
if self.use_gpu:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
else:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim))
def forward(self, x, labels):
"""
Args:
x: feature matrix with shape (batch_size, feat_dim).
labels: ground truth labels with shape (num_classes).
"""
batch_size = x.size(0)
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
distmat.addmm_(1, -2, x, self.centers.t())
classes = torch.arange(self.num_classes).long()
if self.use_gpu: classes = classes.cuda()
labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)
mask = labels.eq(classes.expand(batch_size, self.num_classes))
dist = []
for i in range(batch_size):
value = distmat[i][mask[i]]
value = value.clamp(min=1e-12, max=1e+12) # for numerical stability
dist.append(value)
dist = torch.cat(dist)
loss = dist.mean()
return loss
class RingLoss(nn.Module):
"""Ring loss.
Reference:
Zheng et al. Ring loss: Convex Feature Normalization for Face Recognition. CVPR 2018.
"""
def __init__(self, weight_ring=1.):
super(RingLoss, self).__init__()
self.radius = nn.Parameter(torch.ones(1, dtype=torch.float))
self.weight_ring = weight_ring
def forward(self, x):
l = ((x.norm(p=2, dim=1) - self.radius)**2).mean()
return l * self.weight_ring
class CircleLoss(nn.Module):
'''
a circle loss implement, simple and crude
'''
def __init__(self, m: float, gamma: float):
super(CircleLoss, self).__init__()
self.m = m
self.gamma = gamma
def forward(self, features: Tensor, pids: Tensor, dist: str='cos'):
if pids.size(0) == features.size(0):
m = pids.size(0)
else: raise ValueError('Error in the dim of the pids')
# compute the mask of pos_mat & neg_mat
pos = pids.unsqueeze(1).expand(m, m).eq(pids.unsqueeze(0).expand(m, m)).float()
pos_mat = pos - torch.eye(m, m, device=pos.device)
neg_mat = pids.unsqueeze(1).expand(m, m).ne(pids.unsqueeze(0).expand(m, m)).float()
# cos or euclidean
if dist == 'cos':
features = F.normalize(features)
# cosine dist of the vecters
dist_cos = torch.matmul(features, features.t()) # 32 * 32
s_p = dist_cos * pos_mat
s_n = dist_cos * neg_mat
alpha_p = torch.clamp_min(-s_p.detach() + 1 + self.m, min=0.)
alpha_n = torch.clamp_min(s_n.detach() + self.m, min=0.)
delta_p = 1 - self.m
delta_n = self.m
# logit_p = - self.gamma * alpha_p * (s_p - delta_p) * pos_mat
logit_p = - self.gamma * alpha_p * (s_p - delta_p)
# logit_n = self.gamma * alpha_n * (s_n - delta_n) * neg_mat
logit_n = self.gamma * alpha_n * (s_n - delta_n)
exp_p = torch.exp(logit_p) * pos_mat
exp_n = torch.exp(logit_n) * neg_mat
# loss = F.softplus(torch.logsumexp(logit_p, dim=1) + torch.logsumexp(logit_n, dim=1)).mean()
loss = F.softplus(exp_p.sum(dim=1).log() + exp_n.sum(dim=1).log()).mean()
return loss
if dist == 'euclidean':
dist = torch.pow(features, 2).sum(dim=1, keepdim=True).expand(m, m)
dist = dist + dist.t()
dist.addmm_(1, -2, features, features.t())
dist.clamp(1e-12).sqrt()
d_p = dist * pos_mat
d_n = dist * neg_mat
logit_p = 0.5 * (d_p + self.m) * pos_mat
logit_n = - 0.5 * d_n
loss = F.softplus(torch.logsumexp(logit_p, dim=1) + torch.logsumexp(logit_n, dim=1)).mean()
# embed()
return loss
# if __name__ == '__main__':
# pass