-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.R
451 lines (402 loc) · 25.8 KB
/
functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# Universal function for all estimation methods (OLS/GMM/SEL)
# Data generating process for a linear model
generate.data <- function(N = 150, # Number of observations
params = c(1,1,1,1), # Vector: intercept, slope coefficient for linear model, sd(log(X)), sd(U)
boundary = 1.4, # Threshold value that separates the strata
Pl = c(0.9, 0.3), # Vector: probabilities of retaining a value from the first and second strata respectively
strat.var = "X", # "X" or "Y" for exogenous or endogenous sampling respectively
heteroskedastic = FALSE, # FALSE for homoskedastic design and TRUE for heteroskedastic error term
seed = 1 # Seed for Monte Carlo
) {
set.seed(seed)
beta <- params[1:2]
sdXs <- params[3]
sdUs <- params[4]
# Initialise the model, variables drawn from the target population
Xs <- sort(rlnorm(N, sd = sdXs))
Us <- rnorm(N, sd = sdUs)
if (heteroskedastic) Us <- Us*sqrt(.1+.2*Xs+.3*Xs^2)
Ys <- cbind(1, Xs) %*% beta + Us
# Variables on which selection is made
S <- if (strat.var == "X") Xs else if (strat.var == "Y") Ys else stop("strat.var should be either 'X' or 'Y'")
D <- ifelse(S < boundary, 0, 1) # Label of the strata, 0 (lower) or 1 (upper)
T <- runif(N) # T is the variable to decide whether the observation is retained or not
include <- ifelse(D==0, T < Pl[1], T < Pl[2])
weight.i <- ifelse(D==0, 1/Pl[1], 1/Pl[2])
Zs <- data.frame(Ys, Xs, D, T, include, weight.i)
# Uncomment below to check for correct proportions
# aggregate(Zs$include, by=list(Zs$D), FUN=mean)
# Retained sample
Z <- Zs[include, c(1:3, ncol(Zs))]
# Since the distribution is heavy-tailed log-normal, we trim off a couple of points to get rid of outliers and improve all estimators
# Z is sorted on X values, so the worst values are at the end of the dataframe; floor(log10(N)) seems a very sparing value
# For N<100, it will trim 1 point, for 100<N<1000, 2 points etc.
Z <- Z[1:(nrow(Z)-floor(log10(nrow(Z)))),]
colnames(Z) <- c("Y", "X", "D", "weight")
return(Z)
}
# Function for case 1: no shares
# Wrapper for Owen's cemplik for estimation of coefficients without shares
smoothEmplik <- function(z, sel.weights){
sel <- apply(sel.weights, MARGIN = 1, function(w) suppressWarnings(cemplik(z, ct=w)))
return(sel)
}
# Function for case 2: with shares
# Wrapper for Owen's cemplik2 for estimation of coefficients and shares
smoothEmplik2 <- function(z, sel.weights, shift) {
sel <- apply(sel.weights, MARGIN = 1, function(w) suppressWarnings(cemplik2(z, ct=w, shift=shift)))
return(sel)
}
# Function for case 1: no shares
# A function that takes parameters and returns the likelihood
linearSmoothEmplik <- function(beta, Z, sel.weights, trim = NULL) {
if (is.null(trim)) trim <- rep(1, nrow(Z))
rho <- (Z$Y - cbind(1, Z$X) %*% beta)*Z$weight # = 0; conditional moment restriction
empliklist <- smoothEmplik(rho, sel.weights) # returns a list; One for each conditioning vector point
logsemplik <- trim %*% unlist(lapply(empliklist, '[[', 1))
return(logsemplik)
}
# Function for case 1: no shares
# Modified function in the inner loop: takes a parameter (intercept) and a hypothesised slope and returns the likelihood
# Here, beta = beta0 and slope = beta1
linearSmoothEmplikTest <- function(beta, slope, Z, sel.weights, trim = NULL) {
theta <- c(beta, slope)
if (is.null(trim)) trim <- rep(1, nrow(Z))
rho <- (Z$Y - cbind(1, Z$X) %*% theta)*Z$weight # = 0; conditional moment restriction
empliklist <- smoothEmplik(rho, sel.weights) # returns a list; One for each conditioning vector point
logsemplik <- trim %*% unlist(lapply(empliklist, '[[', 1))
return(logsemplik)
}
# Function for case 2: with shares
# Original function in the inner loop: takes parameters, mu and returns the likelihood
# Here, theta = c(beta0, beta1, Q)
linearMuSmoothEmplik <- function(mu, theta, Z, sel.weights, trim = NULL) {
beta <- theta[1:2]
Q <- theta[3]
if (is.null(trim)) trim <- rep(1, nrow(Z))
rho1 <- (Z$Y - cbind(1, Z$X) %*% beta) * Z$weight # = 0; conditional moment restriction
rho2 <- ((1 - Z$D) - Q) * Z$weight
empliklist <- smoothEmplik2(rho1, sel.weights, shift = mu*rho2) # returns a list; one for each conditioning element
logsemplik <- trim %*% unlist(lapply(empliklist, '[[', 1))
return(logsemplik)
}
# Function for case 2: with shares
# Modified function in the inner loop: takes parameters, mu and the hypothesised slope and returns the likelihood
# Here, theta = c(beta0, Q) and slope = beta1
linearMuSmoothEmplikTest <- function(mu, theta, slope, Z, sel.weights, trim = NULL) {
beta <- c(theta[1], slope)
Q <- theta[2]
if(is.null(trim)) trim <- rep(1, nrow(Z))
rho1 <- (Z$Y - cbind(1, Z$X) %*% beta) * Z$weight
rho2 <- ((1 - Z$D) - Q) * Z$weight
empliklist <- smoothEmplik2(rho1, sel.weights, shift = mu*rho2)
logsemplik <- trim %*% unlist(lapply(empliklist, '[[', 1))
return(logsemplik)
}
# Function for case 2: with shares
# Modified function in the inner loop: takes mu and the hypothesised coefficients and returns the likelihood
# It is called 'Wald' for comparability with OLS/GMM Wald test results for two coefficients
# Here, theta = Q and coefs = c(beta0, beta1)
linearMuSmoothEmplikWald <- function(mu, theta, coefs, Z, sel.weights, trim = NULL) {
beta <- c(coefs[1], coefs[2])
Q <- theta
if(is.null(trim)) trim <- rep(1, nrow(Z))
rho1 <- (Z$Y - cbind(1, Z$X) %*% beta) * Z$weight
rho2 <- ((1 - Z$D) - Q) * Z$weight
empliklist <- smoothEmplik2(rho1, sel.weights, shift = mu*rho2)
logsemplik <- trim %*% unlist(lapply(empliklist, '[[', 1))
return(logsemplik)
}
# Function for case 2: with shares
linearSharesSmoothEmplik <- function(theta, Z, sel.weights, trim = NULL) {
muopt <- optim(0, linearMuSmoothEmplik, theta=theta, Z=Z, sel.weights=sel.weights, method="Brent", lower=-10, upper=10)$value
return(muopt)
}
# Function for case 2: with shares
linearSharesSmoothEmplikTest <- function(theta, slope, Z, sel.weights, trim = NULL) {
muopt <- optim(0, linearMuSmoothEmplikTest, theta=theta, slope=slope, Z=Z, sel.weights=sel.weights, method="Brent", lower=-10, upper=10)$value
return(muopt)
}
# Function for case 2: with shares
linearSharesSmoothEmplikWald <- function(theta, coefs, Z, sel.weights, trim = NULL) {
muopt <- optim(0, linearMuSmoothEmplikWald, theta=theta, coefs=coefs, Z=Z, sel.weights=sel.weights, method="Brent", lower=-10, upper=10)$value
return(muopt)
}
# Function for both cases: find good initial values for SEL using GMM as a reference for order of magnitude
# We do not trust GMM because it is (1) more sensitive to outliers and (2) less efficient
# In order to speed up convergence and reduce maximisation time, we check a grid of points not far away from GMM initval and pick the best one
# This function is completely agnostic about the true values for unrestricted estimation, covers a wide grid of possible points
# Receives the dataset from the external function and does the computaion
maximise.SEL.noshares <- function(Z,
params, # Used only if size and power are being tested
sel.weights,
powersize = TRUE,
wald = TRUE,
verbose = FALSE,
optmethod = "Nelder-Mead"
) {
traceval <- if (verbose) 1 else 0
tic0 <- Sys.time()
if (verbose) print("Searching for a good initial value...")
start.values <- lm(Y~X, data=Z, weights=Z$weight)$coeff
start.value.multipliers <- c(-1, -0.5, 0, 0.5, 0.75, 1, 1.25, 1.5, 2)
start.values.grid.b0 <- sort(start.value.multipliers*start.values[1]) # A reasonable range for initial guesses
start.values.grid.b1 <- sort(start.value.multipliers*start.values[2])
start.values.grid.b0 <- c(min(start.values.grid.b0)-1, start.values.grid.b0, max(start.values.grid.b0)+1) # If any of the ends is 0, multiplication will not do anything; addition needed
start.values.grid.b1 <- c(min(start.values.grid.b1)-1, start.values.grid.b1, max(start.values.grid.b1)+1)
# The user must know how many initial values have been checked!
if (verbose) pb <- txtProgressBar(style=3, width=50)
test.start.grid <- matrix(NA, nrow=length(start.values.grid.b0), ncol=length(start.values.grid.b1))
progress <- 0 # We are not using Vectorize and outer for the sake of keeping track of progress
for (i in 1:length(start.values.grid.b0)) {
for (j in 1:length(start.values.grid.b1)) {
test.start.grid[i,j] <- linearSmoothEmplik(c(start.values.grid.b0[i], start.values.grid.b1[j]), Z = Z, sel.weights = sel.weights)
progress <- progress+1
if (verbose) setTxtProgressBar(pb, progress/prod(dim(test.start.grid)))
}
}
if (verbose) close(pb)
#
best.index <- which(test.start.grid==max(test.start.grid), arr.ind = TRUE)
start.values <- c(beta0=start.values.grid.b0[best.index[1]], beta1=start.values.grid.b1[best.index[2]])
tic.initval.ur <- Sys.time()
diff.initval <- as.numeric(difftime(tic.initval.ur, tic0, units = "mins"))
if (verbose) print(paste0("Searched [", paste(round(range(start.values.grid.b0), 2), collapse=","), "]x[", paste(round(range(start.values.grid.b1), 2), collapse=","),
"] in ", round(diff.initval, 1), " mins; SEL(", paste(round(start.values[1:2], 2), collapse=","), ")=", round(max(test.start.grid), 2), "."))
if (verbose) print("Conducting optimisation of unrestricted SEL without shares...")
optim.unrestricted <- optim(start.values, fn=function(vpar) {linearSmoothEmplik(vpar, Z, sel.weights = sel.weights)}, control=list(fnscale=-1, trace=traceval, REPORT=1), method=optmethod)
tic.ur <- Sys.time()
diff.ur <- as.numeric(difftime(tic.ur, tic.initval.ur, units = "mins"))
thetahat <- optim.unrestricted$par
SELur <- optim.unrestricted$value
if (verbose) print(paste0("Unconstrained optimisation finished in ", round(diff.ur, 1), " mins; SEL(", paste(round(thetahat, 2), collapse=","), ")=", round(SELur, 2), "."))
if (powersize) {
tic.r0 <- Sys.time()
# Measuring the power and size of the test, i.e. H01: slope = 0 and H02: slope = true value
start.values0 <- lm(Y~1, data=Z, weights = Z$weight)$coeff # Restricted model with slope = 0
start.values1 <- lm(I(Y-params[2]*X)~1, data=Z, weights = Z$weight)$coeff # Restricted model with slope = true slope
range0 <- if (start.values0<0) c(min(2*start.values0, start.values0-3), max(0.5*start.values0, start.values0+3)) else c(min(0.5*start.values0, start.values0-3), max(2*start.values0, start.values0+3))
range1 <- if (start.values1<0) c(min(2*start.values1, start.values1-2), max(0.5*start.values1, start.values1+2)) else c(min(0.5*start.values1, start.values1-2), max(2*start.values1, start.values1+2))
if(verbose) print(paste0("Performing optimisation of restricted SEL without shares under false H0: slope=0..."))
optim.restricted0 <- optim(start.values0, fn=function(vpar) {linearSmoothEmplikTest(vpar, slope=0, Z, sel.weights = sel.weights)}, control=list(fnscale=-1, trace=traceval, REPORT=1), method="Brent", lower=range0[1], upper=range0[2])
tic.r0 <- Sys.time()
diff.r0 <- as.numeric(difftime(tic.r0, tic.ur, units = "mins"))
thetahat0 <- optim.restricted0$par
SELr0 <- optim.restricted0$value
print(paste0("Constrained optimisation 1 finished in ", round(diff.r0, 1), " mins; SEL(", round(thetahat0, 2), ",0)=", round(SELr0, 2), "."))
if (verbose) print(paste0("Performing optimisation of restricted SEL without shares under true H0: slope=", params[2], "..."))
optim.restricted1 <- optim(start.values1, fn=function(vpar) {linearSmoothEmplikTest(vpar, slope=params[2], Z, sel.weights = sel.weights)}, control=list(fnscale=-1, trace=traceval, REPORT=1), method="Brent", lower=range1[1], upper=range1[2])
tic.r1 <- Sys.time()
diff.r1 <- as.numeric(difftime(tic.r1, tic.r0, units = "mins"))
thetahat1 <- optim.restricted1$par
SELr1 <- optim.restricted1$value
print(paste0("Constrained optimisation 2 finished in ", round(diff.r1, 1), " mins; SEL(", round(thetahat1, 2), ",", params[2],")=", round(SELr1, 2), "."))
}
results <- list(noshares.ur = c(thetahat, SELur=SELur))
if (powersize) {
results$noshares.h0zero <- c(beta0=thetahat0[1], beta1=0, SELr0=SELr0)
results$noshares.h1true <- c(beta0=thetahat1[1], beta1=params[2], SELr1=SELr1)
}
if (wald) {
SELwald <- as.numeric(linearSmoothEmplik(params[1:2], Z, sel.weights))
results$noshares.h1wald <- c(beta0=params[1], beta1=params[2], SELwald=SELwald)
}
results$minutes <- c(noshares.ur.initval=diff.initval, noshares.ur.optim=diff.ur)
if (powersize) results$minutes <- c(results$minutes, noshares.h0=diff.r0, noshares.h1=diff.r1)
return(results)
}
# Function for case 1: no shares
stratSampleLinearSEL <- function(N, # See generate.data for arguments of the same name
params,
boundary,
Pl,
strat.var,
heteroskedastic,
seed = 1,
trim = NULL, # Trimming function for trimmed SEL
band = -1, # Multiple of Silverman's rot
powersize = FALSE, # Whether SEL under the true and false H0 should be returned;
wald = FALSE, # Estimate the SEL at the true parameter values for comparison with OLS and GMM Wald test
# Leave FALSE to speed up calculations, just for estimation purposes
verbose = FALSE, # Benchmarks time, appends the timing to the output list, and passes trace=1 to optim
optmethod = "Nelder-Mead", # Method that is passed to optim()
gridtransform = NULL # Function that is applied to sel.weights.grid
) {
tic0 <- Sys.time()
if(seed%%10 == 0) cat(seed, " ")
if(seed%%200 == 0) cat(seed, "\n")
traceval <- if (verbose) 1 else 0
Z <- generate.data(N=N, params=params, boundary=boundary, Pl=Pl, strat.var=strat.var, heteroskedastic=heteroskedastic, seed=seed)
sel.weights.grid <- Z$X
if (!is.null(gridtransform)) {
ftransform <- get(gridtransform)
sel.weights.grid <- ftransform(sel.weights.grid)
}
if (band < 0) {
bn <- - band * 1.06*sd(sel.weights.grid)*length(sel.weights.grid)^{-1/5} # Bandwidth, Silverman's rule of thumb
} else bn <- band
sel.weights <- outer(sel.weights.grid, sel.weights.grid, function(x, y) dnorm((x-y)/bn) )
sel.weight.den <- rowSums(sel.weights) # sum over 'j' to obtain marginal on 'i'
sel.weights <- sel.weights / sel.weight.den # w_{ij} ~ p(j|i)
results <- maximise.SEL.noshares(Z=Z, params=params, sel.weights=sel.weights, powersize=powersize, wald=wald, verbose=verbose, optmethod=optmethod)
results$call <- c(N, params, boundary, Pl, strat.var, heteroskedastic, seed, band, bn, powersize, wald, verbose, optmethod)
names(results$call) <- c("N", "beta0", "beta1", "sdX", "sdU", "boundary", "P1", "P2", "strat.var", "heteroskedastic", "seed", "band", "bn", "powersize", "wald", "verbose", "optmethod")
return(results)
}
# Function for case 2: with shares
stratSampleLinearQSEL <- function(N, # See generate.data for arguments of the same name
params,
boundary,
Pl,
strat.var,
heteroskedastic,
seed = 1,
trim = NULL, # Trimming function for trimmed SEL
band = -1, # Multiple of Silverman's rot
powersize = FALSE, # Whether SEL under the true and false H0 should be returned;
# Leave FALSE to speed up calculations, just for estimation purposes
wald = FALSE, # Estimate the SEL at the true parameter values for comparison with OLS and GMM Wald test
verbose = FALSE, # Benchmarks time, appends the timing to the output list, and passes trace=1 to optim
optmethod = "Nelder-Mead", # Method that is passed to optim()
gridtransform = NULL # Function that is applied to sel.weights.grid
) {
tic0 <- Sys.time()
if(seed%%10 == 0) cat(seed, " ")
if(seed%%200 == 0) cat(seed, "\n")
traceval <- if(verbose) 1 else 0
Z <- generate.data(N=N, params=params, boundary=boundary, Pl=Pl, strat.var=strat.var, heteroskedastic=heteroskedastic, seed=seed)
n <- nrow(Z) # observations in the sample
M <- n - sum(Z$D) # observations on the sample from 1st stratum
sel.weights.grid <- Z$X
if (!is.null(gridtransform)) {
ftransform <- get(gridtransform)
sel.weights.grid <- ftransform(sel.weights.grid)
}
if (band < 0) {
bn <- - band * 1.06*sd(sel.weights.grid)*length(sel.weights.grid)^{-1/5} # Bandwidth, Silverman's rule of thumb
} else bn <- band
sel.weights <- outer(sel.weights.grid, sel.weights.grid, function(x, y) dnorm((x-y)/bn) )
sel.weight.den <- rowSums(sel.weights) # sum over 'j' to obtain marginal on 'i'
sel.weights <- sel.weights / sel.weight.den # w_{ij} ~ p(j|i)
Q.mm <- (M/Pl[1]) / (M/Pl[1] + (n-M)/Pl[2])
initval <- maximise.SEL.noshares(Z=Z, params=params, sel.weights=sel.weights, powersize=powersize, wald=wald, verbose=verbose, optmethod=optmethod)
start.values <- c(initval$noshares.ur[1:2], Q=Q.mm)
# start.values <- c(params[1:2], Q=if(heteroskedastic)Q.het else Q.hom) # Uncomment if you want to start the search from true values (infeasible in practice; for testing only; Q.het and Q.hom must be in memory!)
if (verbose) print("Conducting optimisation of unrestricted SEL with shares...")
tic.initval.ur <- Sys.time()
optim.unrestricted <- optim(start.values, fn=function(vpar) {linearSharesSmoothEmplik(vpar, Z, sel.weights = sel.weights)}, control=list(fnscale=-1, trace=traceval, REPORT=1), method=optmethod)
tic.ur <- Sys.time()
diff.ur <- as.numeric(difftime(tic.ur, tic.initval.ur, units = "mins"))
thetahat <- optim.unrestricted$par
SELur <- optim.unrestricted$value
if (verbose) print(paste0("Unconstrained optimisation finished in ", round(diff.ur, 1), " mins; SEL(", paste(round(thetahat, 2), collapse=","), ")=", round(SELur, 2), "."))
if (powersize) {
# Measuring the power and size of the test, i.e. H01: slope = 0 and H02: slope = true value
# As usually, first, we use the maxima of SEL without shares and then add shares and maximise the full function
start.values0 <- c(initval$noshares.h0zero[1], Q=Q.mm)
start.values1 <- c(initval$noshares.h1true[1], Q=Q.mm)
# start.values0 <- c(params[1]+exp(params[3]^2/2), Q=if(heteroskedastic) Q.het else Q.hom) # Uncomment if you want to start the search from true values (infeasible in practice; for testing only; Q.het and Q.hom must be in memory!)
# start.values1 <- c(params[1], Q=if(heteroskedastic) Q.het else Q.hom)
tic.initval.r <- Sys.time()
if (verbose) print(paste0("Performing optimisation of restricted SEL with shares under false H0: slope=0..."))
optim.restricted0 <- optim(start.values0, fn=function(vpar) {linearSharesSmoothEmplikTest(vpar, slope=0, Z, sel.weights = sel.weights)}, control=list(fnscale=-1, trace=traceval, REPORT=1), method=optmethod)
tic.r0 <- Sys.time()
diff.r0 <- as.numeric(difftime(tic.r0, tic.initval.r, units = "mins"))
thetahat0 <- optim.restricted0$par
SELr0 <- optim.restricted0$value
if (verbose) {
print(paste0("Constrained optimisation 1 finished in ", round(diff.r0, 1), " mins; SEL(", round(thetahat0[1], 2), ",0,", round(thetahat0[2], 2), ")=", round(SELr0, 2), "."))
print(paste0("Performing optimisation of restricted SEL with shares under true H0: slope=", params[2], "..."))
}
optim.restricted1 <- optim(start.values1, fn=function(vpar) {linearSharesSmoothEmplikTest(vpar, slope=params[2], Z, sel.weights = sel.weights)}, control=list(fnscale=-1, trace=traceval, REPORT=1), method=optmethod)
tic.r1 <- Sys.time()
diff.r1 <- as.numeric(difftime(tic.r1, tic.r0, units = "mins"))
thetahat1 <- optim.restricted1$par
SELr1 <- optim.restricted1$value
if(verbose) print(paste0("Constrained optimisation 2 finished in ", round(diff.r1, 1), " mins; SEL(", round(thetahat1[1], 2), ",", params[2], ",", round(thetahat1[2], 2), ")=", round(SELr1, 2), "."))
}
if (wald) {
start.valuesWald <- Q.mm # Does not really matter for Brent optimiser
# start.valuesWald <- Q.het
if (verbose) print(paste0("Performing optimisation of restricted SEL under true H0: coefs=(", paste(params[1:2], collapse = ","), ")."))
ticWald0 <- Sys.time()
optim.restrictedWald <- optim(start.valuesWald, fn=function(vpar) {linearSharesSmoothEmplikWald(vpar, coefs=params[1:2], Z, sel.weights = sel.weights)},
control=list(fnscale=-1, trace=traceval, REPORT=1), method="Brent", lower=max(Q.mm/3, 0.02), upper=min(Q.mm*4, 0.98))
ticWald1 <- Sys.time()
diff.Wald <- as.numeric(difftime(ticWald1, ticWald0, units = "mins"))
thetahatWald <- optim.restrictedWald$par
SELWald <- optim.restrictedWald$value
if(verbose) print(paste0("Constrained optimisation (Wald) finished in ", round(diff.Wald, 1), " mins; SEL(", params[1], ",", params[2], ",", round(thetahatWald[1], 2), ")=", round(SELWald, 2), "."))
}
results <- list(unrestricted = c(thetahat, SELur=SELur), Q.mm = Q.mm)
if (powersize) {
results$h0zero <- c(thetahat0[1], beta1=0, thetahat0[2], SELr0=SELr0)
results$h1true <- c(thetahat1[1], beta1=params[2], thetahat1[2], SELr1=SELr1)
}
if (wald) results$h1Wald <- c(beta0=params[1], beta1=params[2], Q=thetahatWald, SELWald=SELWald)
# Processing timestamps
results$minutes <- c(shares.ur.initval=as.numeric(initval$minutes["noshares.ur.initval"]+initval$minutes["noshares.ur.optim"]), shares.ur.optim=diff.ur)
if (powersize) results$minutes <- c(results$minutes, shares.r.initval=as.numeric(initval$minutes["noshares.h0"]+initval$minutes["noshares.h1"]), shares.h0=diff.r0, shares.h1=diff.r1)
if (wald) results$minutes <- c(results$minutes, shares.hWald=diff.Wald)
results$call <- c(N, params, boundary, Pl, strat.var, heteroskedastic, seed, band, bn, powersize, wald, verbose, optmethod)
names(results$call) <- c("N", "beta0", "beta1", "sdX", "sdU", "boundary", "P1", "P2", "strat.var", "heteroskedastic",
"seed", "band", "bn", "powersize", "wald", "verbose", "optmethod")
return(results)
}
StratSampOLS <- function(N, # See generate.data for arguments of the same name
params,
boundary,
Pl,
strat.var = "X",
heteroskedastic = FALSE,
seed=1,
method = "OLS", # "OLS" or "GMM"
powersize = TRUE # Whether t-stats under the true and false H0 should be returned;
# Set to FALSE to speed up calculations
# Also does Wald test for beta0=true value, beta1=true value
) {
Z <- generate.data(N=N, params=params, boundary=boundary, Pl=Pl, strat.var=strat.var, heteroskedastic=heteroskedastic, seed=seed)
the.weights <- if (method=="GMM") Z$weight else if (method=="OLS") rep(1, nrow(Z)) else stop("method must be either 'GMM' or 'OLS'")
stra.OLS <- lm(Y ~ X, data = Z, weights = the.weights)
# White's HC0 heteroskedasticity-robust VCOV computed by hand (6x times faster than sandwich::vcovHC)
# Xtilde <- model.matrix(stra.OLS)
# Xbread <- Xtilde * sqrt(stra.OLS$weights)
# Xmeat <- Xtilde * (stra.OLS$weights * stra.OLS$residuals)
# bread <- solve(crossprod(Xbread)) # E(XX'/b)
# meat <- crossprod(Xmeat) # E(XX'U^2/b^2)
# thetavar2 <- bread %*% meat %*% bread
output <- list() # We need not carry over those huge lm-class objects; we only need coefficients, shares and, if hypotheses are tested, t-stats
output$coefficients <- stra.OLS$coefficients
if (powersize) {
if (!("sandwich" %in% (.packages()))) stop("Please load library(sandwich) before invoking StratSampOLS with powersize=TRUE")
thetavarHC0 <- vcovHC(stra.OLS, type="HC0")
thetavarHC3 <- vcovHC(stra.OLS, type="HC3")
# Test if the hand-computed result is the same as the one provided by the package
# all.equal(thetavarHC0, thetavar2)
t0HC0 <- (stra.OLS$coefficients["X"] - 0)/sqrt(thetavarHC0[2,2]) # H0: theta[2] = 0
t1HC0 <- (stra.OLS$coefficients["X"] - params[2])/sqrt(thetavarHC0[2,2]) # H0: theta[2] = true value
t0HC3 <- (stra.OLS$coefficients["X"] - 0)/sqrt(thetavarHC3[2,2])
t1HC3 <- (stra.OLS$coefficients["X"] - params[2])/sqrt(thetavarHC3[2,2])
output$zstatHC0 <- as.numeric(c(t0HC0, t1HC0))
output$zstatHC3 <- as.numeric(c(t0HC3, t1HC3))
# Extra regressions incorporating the information from the hypotheses
stra.OLS0 <- lm(Y~1, data=Z, weights = the.weights)
stra.OLS1 <- lm(I(Y-params[2]*X)~1, data=Z, weights = the.weights)
output$h0zero <- c(stra.OLS0$coefficients, 0)
output$h1true <- c(stra.OLS1$coefficients, 1)
# Wald test
WaldHC0 <- as.numeric(t(stra.OLS$coefficients - params[1:2]) %*% solve(thetavarHC0) %*% (stra.OLS$coefficients - params[1:2]))
WaldHC3 <- as.numeric(t(stra.OLS$coefficients - params[1:2]) %*% solve(thetavarHC3) %*% (stra.OLS$coefficients - params[1:2]))
output$Wald <- c(WaldHC0 = WaldHC0, WaldHC3 = WaldHC3)
}
# Calculating the empirical shares
if (strat.var == "X") {
sum.1p1 <- sum(Z$X < boundary)/Pl[1]
sum.1p2 <- sum(Z$X >= boundary)/Pl[2]
} else if (strat.var == "Y") {
sum.1p1 <- sum(Z$Y < boundary)/Pl[1]
sum.1p2 <- sum(Z$Y >= boundary)/Pl[2]
}
output$shares <- (sum.1p1)/(sum.1p1 + sum.1p2)
return(output)
}