forked from Namenaro/ecg_segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
281 lines (232 loc) · 9.5 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import numpy as np
import tensorflow as tf
import pandas as pd
freq = 500 # частота дискретизации
tolerance = (150 / 1000) * freq * 60 # допустимое временное окно 150 мс
def change_mask(sample):
"""
приводим маску к виду, где хранится только начало и конец интервала
:param sample:
:return:
"""
p = [[], []]
qrs = [[], []]
t = [[], []]
for i in range(sample.shape[0] - 1):
if sample[i] != 0 and sample[i + 1] == 0:
# start_P
p[0].append(i)
elif sample[i] != 1 and sample[i + 1] == 1:
# start_QRS
qrs[0].append(i)
elif sample[i] != 2 and sample[i + 1] == 2:
# start_T
t[0].append(i)
if sample[i] == 0 and sample[i + 1] != 0:
# end_P
p[1].append(i)
elif sample[i] == 1 and sample[i + 1] != 1:
# end_QRS
qrs[1].append(i)
elif sample[i] == 2 and sample[i + 1] != 2:
# end_T
t[1].append(i)
return p, qrs, t
def comprassion(mask1, mask2, start_or_end):
"""
сравнивает два отведения по одному полю
:param mask1:
:param mask2: true
:param start_or_end: 0 -- начало интервала, 1 -- конец
:return:
"""
tp = []
fp = []
fn = []
error = []
pulse = 0
for count in range(len(mask2[start_or_end])-1):
pulse += mask2[start_or_end][count+1] - mask2[start_or_end][count]
if pulse == 0:
pulse = 70
else:
pulse =1/(pulse / (count+1) /500)*60
for p_1 in mask1[start_or_end]:
flag = False
for p_2 in mask2[start_or_end]:
if p_1 + (tolerance/pulse) >= p_2 > p_1 - (tolerance/pulse):
tp.append(p_1)
error.append((p_1 - p_2) / freq)
mask2[start_or_end].remove(p_2)
flag = True
break
if not flag:
fp.append(p_1)
for p_2 in mask2[start_or_end]:
fn.append(p_2)
return tp, fp, fn, error
class Metrics(object):
def Se(self, y_true, y_pred):
return tf.py_func(self._np_Se, [y_true, y_pred], tf.float32)
@staticmethod
def _np_Se(y_true, y_pred):
true_pos = 0
false_neg = 0
for j in range(y_pred.shape[0]):
sample_true = np.argmax(y_true[j], 1)
sample_pred = np.argmax(y_pred[j], 1)
p1, qrs1, t1 = change_mask(sample_pred)
p2, qrs2, t2 = change_mask(sample_true)
for i in range(2):
tp, _, fn, _ = comprassion(p1, p2, i)
true_pos += len(tp)
false_neg += len(fn)
tp, _, fn, _ = comprassion(qrs1, qrs2, i)
true_pos += len(tp)
false_neg += len(fn)
tp, _, fn, _ = comprassion(t1, t2, i)
true_pos += len(tp)
false_neg += len(fn)
if true_pos + false_neg == 0:
res = 0
else:
res = true_pos / (true_pos + false_neg)
return np.mean(res).astype(np.float32)
def PPV(self, y_true, y_pred):
return tf.py_func(self._np_PPV, [y_true, y_pred], tf.float32)
@staticmethod
def _np_PPV(y_true, y_pred):
true_pos = 0
false_pos = 0
for j in range(y_pred.shape[0]):
sample_true = np.argmax(y_true[j], 1)
sample_pred = np.argmax(y_pred[j], 1)
p1, qrs1, t1 = change_mask(sample_pred)
p2, qrs2, t2 = change_mask(sample_true)
for i in range(2):
tp, fp, _, _ = comprassion(p1, p2, i)
true_pos += len(tp)
false_pos += len(fp)
tp, fp, _, _ = comprassion(qrs1, qrs2, i)
true_pos += len(tp)
false_pos += len(fp)
tp, fp, _, _ = comprassion(t1, t2, i)
true_pos += len(tp)
false_pos += len(fp)
if true_pos + false_pos == 0:
res = 0
else:
res = true_pos / (true_pos + false_pos)
return np.mean(res).astype(np.float32)
def statistics(y_true, y_pred):
df_res = pd.DataFrame(
{'start_p': [0.0, 0.0, 0.0, 0.0], 'end_p': [0.0, 0.0, 0.0, 0.0], 'start_qrs': [0.0, 0.0, 0.0, 0.0],
'end_qrs': [0.0, 0.0, 0.0, 0.0], 'start_t': [0.0, 0.0, 0.0, 0.0], 'end_t': [0.0, 0.0, 0.0, 0.0]},
index=['Se', 'PPV', 'm', 'sigma^2'])
df_stat = pd.DataFrame(
{'start_p': [0, 0, 0], 'end_p': [0, 0, 0], 'start_qrs': [0, 0, 0], 'end_qrs': [0, 0, 0], 'start_t': [0, 0, 0],
'end_t': [0, 0, 0]}, index=['tp', 'fp', 'fn'])
df_errors = pd.DataFrame(
{'start_p': [[]], 'end_p': [[]], 'start_qrs': [[]], 'end_qrs': [[]], 'start_t': [[]], 'end_t': [[]]})
for j in range(y_pred.shape[0]):
sample_true = np.argmax(y_true[j], -1)
sample_pred = preproc(np.argmax(y_pred[j], -1))
p1, qrs1, t1 = change_mask(sample_pred)
p2, qrs2, t2 = change_mask(sample_true)
tp, fp, fn, error = comprassion(p1, p2, 0)
df_stat.at['tp', 'start_p'] += len(tp)
df_stat.at['fp', 'start_p'] += len(fp)
df_stat.at['fn', 'start_p'] += len(fn)
df_errors.at[0, 'start_p'].extend(error)
tp, fp, fn, error = comprassion(p1, p2, 1)
df_stat.at['tp', 'end_p'] += len(tp)
df_stat.at['fp', 'end_p'] += len(fp)
df_stat.at['fn', 'end_p'] += len(fn)
df_errors.at[0, 'end_p'].extend(error)
tp, fp, fn, error = comprassion(qrs1, qrs2, 0)
df_stat.at['tp', 'start_qrs'] += len(tp)
df_stat.at['fp', 'start_qrs'] += len(fp)
df_stat.at['fn', 'start_qrs'] += len(fn)
df_errors.at[0, 'start_qrs'].extend(error)
tp, fp, fn, error = comprassion(qrs1, qrs2, 1)
df_stat.at['tp', 'end_qrs'] += len(tp)
df_stat.at['fp', 'end_qrs'] += len(fp)
df_stat.at['fn', 'end_qrs'] += len(fn)
df_errors.at[0, 'end_qrs'].extend(error)
tp, fp, fn, error = comprassion(t1, t2, 0)
df_stat.at['tp', 'start_t'] += len(tp)
df_stat.at['fp', 'start_t'] += len(fp)
df_stat.at['fn', 'start_t'] += len(fn)
df_errors.at[0, 'start_t'].extend(error)
tp, fp, fn, error = comprassion(t1, t2, 1)
df_stat.at['tp', 'end_t'] += len(tp)
df_stat.at['fp', 'end_t'] += len(fp)
df_stat.at['fn', 'end_t'] += len(fn)
df_errors.at[0, 'end_t'].extend(error)
for index in df_res.columns:
for i in range(len(df_errors.at[0, index])):
df_errors.at[0, index][i] = df_errors.loc[0, index][i]*1000
if df_stat.loc['tp', index] == 0:
if df_stat.loc['fn', index] == 0 and df_stat.loc['fp', index] != 0:
df_res.at['Se', index] = 1
df_res.at['PPV', index] = 0
df_res.at['sigma^2', index] = 0
df_res.at['m', index] = 0
elif df_stat.loc['fn', index] != 0 and df_stat.loc['fp', index] == 0:
df_res.at['Se', index] = 0
df_res.at['PPV', index] = 1
df_res.at['sigma^2', index] = 0
df_res.at['m', index] = 0
elif df_stat.loc['fn', index] != 0 and df_stat.loc['fp', index] != 0:
df_res.at['Se', index] = 0
df_res.at['PPV', index] = 0
df_res.at['sigma^2', index] = 0
df_res.at['m', index] = 0
elif df_stat.loc['fn', index] == 0 and df_stat.loc['fp', index] == 0:
df_res.at['Se', index] = 1
df_res.at['PPV', index] = 1
df_res.at['sigma^2', index] = 0
df_res.at['m', index] = 0
else:
df_res.at['Se', index] = df_stat.loc['tp', index] / (df_stat.loc['tp', index] + df_stat.loc['fn', index])
df_res.at['PPV', index] = df_stat.loc['tp', index] / (df_stat.loc['tp', index] + df_stat.loc['fp', index])
df_res.at['sigma^2', index] = np.var(df_errors.loc[0, index])
df_res.at['m', index] = np.mean(df_errors.loc[0, index])
return df_res
def F_score(stat):
presision = 0
recall = 0
for index in stat.columns:
recall += stat.loc['Se', index]
presision += stat.loc['PPV', index]
presision = presision/6
recall = recall/6
F = 2*((presision*recall)/(presision+recall))
return F
def preproc (sample):
"""
примитивная подготовка разметки сети: убирает небольшие разрывы интервалов
:param sample:
:return:
"""
for i in range(sample.shape[0]-10):
if sample[i] !=0:
if sample[i] != sample[i+1]:
for j in range(10):
if sample[i+j+1] == sample[i]:
sample[i+1:i+j] = sample[i]
return sample
if __name__ == "__main__":
from sklearn.model_selection import train_test_split
from dataset import load_dataset
from keras.models import load_model
from utils import *
xy = load_dataset(fixed_baseline=False)
X = xy["x"]
Y = xy["y"]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=42)
metric = Metrics()
Se = metric.Se
model = load_model('./trained_models\\mymodel1.h5', custom_objects={'Se': Se})
pred_test = np.array(model.predict(X_test))
print(statistics(Y_test[:,1000:4000], pred_test[:,1000:4000]).round(4))