forked from Permafacture/Py-Visvalingam-Whyatt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolysimplify.py
451 lines (380 loc) · 15.7 KB
/
polysimplify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
'''
Visvalingam-Whyatt method of poly-line vertex reduction
Visvalingam, M and Whyatt J D (1993)
"Line Generalisation by Repeated Elimination of Points", Cartographic J., 30 (1), 46 - 51
Described here:
http://web.archive.org/web/20100428020453/http://www2.dcs.hull.ac.uk/CISRG/publications/DPs/DP10/DP10.html
=========================================
The MIT License (MIT)
Copyright (c) 2014 Elliot Hallmark
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
================================
'''
from numpy import array, argmin
import numpy as np
def triangle_area(p1,p2,p3):
"""
calculates the area of a triangle given its vertices
"""
return abs(p1[0]*(p2[1]-p3[1])+p2[0]*(p3[1]-p1[1])+p3[0]*(p1[1]-p2[1]))/2.
def triangle_areas_from_array(arr):
'''
take an (N,2) array of points and return an (N,1)
array of the areas of those triangles, where the first
and last areas are np.inf
see triangle_area for algorithm
'''
result = np.empty((len(arr),),arr.dtype)
result[0] = np.inf; result[-1] = np.inf
p1 = arr[:-2]
p2 = arr[1:-1]
p3 = arr[2:]
#an accumulators to avoid unnecessary intermediate arrays
accr = result[1:-1] #Accumulate directly into result
acc1 = np.empty_like(accr)
np.subtract(p2[:,1], p3[:,1], out = accr)
np.multiply(p1[:,0], accr, out = accr)
np.subtract(p3[:,1], p1[:,1], out = acc1 )
np.multiply(p2[:,0], acc1, out = acc1 )
np.add(acc1, accr, out = accr)
np.subtract(p1[:,1], p2[:,1], out = acc1 )
np.multiply(p3[:,0], acc1, out = acc1 )
np.add(acc1, accr, out = accr)
np.abs(accr, out = accr)
accr /= 2.
#Notice: accr was writing into result, so the answer is in there
return result
#the final value in thresholds is np.inf, which will never be
# the min value. So, I am safe in "deleting" an index by
# just shifting the array over on top of it
def remove(s,i):
'''
Quick trick to remove an item from a numpy array without
creating a new object. Rather than the array shape changing,
the final value just gets repeated to fill the space.
~3.5x faster than numpy.delete
'''
s[i:-1]=s[i+1:]
class VWSimplifier(object):
def __init__(self,pts):
'''Initialize with points. takes some time to build
the thresholds but then all threshold filtering later
is ultra fast'''
self.pts = np.array(pts)
self.thresholds = self.build_thresholds()
self.ordered_thresholds = sorted(self.thresholds,reverse=True)
def build_thresholds(self):
'''compute the area value of each vertex, which one would
use to mask an array of points for any threshold value.
returns a numpy.array (length of pts) of the areas.
'''
pts = self.pts
nmax = len(pts)
real_areas = triangle_areas_from_array(pts)
real_indices = range(nmax)
#destructable copies
#ARG! areas=real_areas[:] doesn't make a copy!
areas = np.copy(real_areas)
i = real_indices[:]
#pick first point and set up for loop
min_vert = argmin(areas)
this_area = areas[min_vert]
# areas and i are modified for each point finished
remove(areas,min_vert) #faster
#areas = np.delete(areas,min_vert) #slower
real_idx = i.pop(min_vert)
#cntr = 3
while this_area<np.inf:
'''min_vert was removed from areas and i. Now,
adjust the adjacent areas and remove the new
min_vert.
Now that min_vert was filtered out, min_vert points
to the point after the deleted point.'''
skip = False #modified area may be the next minvert
try:
right_area = triangle_area(pts[i[min_vert-1]],
pts[i[min_vert]],pts[i[min_vert+1]])
except IndexError:
#trying to update area of endpoint. Don't do it
pass
else:
right_idx = i[min_vert]
if right_area <= this_area:
#even if the point now has a smaller area,
# it ultimately is not more significant than
# the last point, which needs to be removed
# first to justify removing this point.
# Though this point is the next most significant
right_area = this_area
#min_vert refers to the point to the right of
# the previous min_vert, so we can leave it
# unchanged if it is still the min_vert
skip = min_vert
#update both collections of areas
real_areas[right_idx] = right_area
areas[min_vert] = right_area
if min_vert > 1:
#cant try/except because 0-1=-1 is a valid index
left_area = triangle_area(pts[i[min_vert-2]],
pts[i[min_vert-1]],pts[i[min_vert]])
if left_area <= this_area:
#same justification as above
left_area = this_area
skip = min_vert-1
real_areas[i[min_vert-1]] = left_area
areas[min_vert-1] = left_area
#only argmin if we have too.
min_vert = skip or argmin(areas)
real_idx = i.pop(min_vert)
this_area = areas[min_vert]
#areas = np.delete(areas,min_vert) #slower
remove(areas,min_vert) #faster
'''if sum(np.where(areas==np.inf)[0]) != sum(list(reversed(range(len(areas))))[:cntr]):
print "broke:",np.where(areas==np.inf)[0],cntr
break
cntr+=1
#if real_areas[0]<np.inf or real_areas[-1]<np.inf:
# print "NO!", real_areas[0], real_areas[-1]
'''
return real_areas
def from_threshold(self,threshold):
return self.pts[self.thresholds >= threshold]
def from_number(self,n):
thresholds = self.ordered_thresholds
try:
threshold = thresholds[int(n)]
except IndexError:
return self.pts
return self.pts[self.thresholds > threshold]
def from_ratio(self,r):
if r<=0 or r>1:
raise ValueError("Ratio must be 0<r<=1")
else:
return self.from_number(r*len(self.thresholds))
class WKTSimplifier(VWSimplifier):
'''VWSimplifier that returns strings suitable for WKT
creation'''
def __init__(self,*args,**kwargs):
if 'precision' in kwargs:
p=kwargs.pop('precision')
else:
p=None
VWSimplifier.__init__(self,*args,**kwargs)
self.set_precision(p)
def set_precision(self,precision):
if precision:
self.pts_as_strs = self.pts.astype('S%s'%precision)
else:
self.pts_as_strs = self.pts.astype(str)
'''slow
def from_threshold(self,threshold,precision=None):
arr = np.array2string(self.pts[self.thresholds > threshold],precision=precision)
return arr.replace('[[ ','(').replace(']]',')').replace(']\n [ ',',')
'''
def wkt_from_threshold(self,threshold, precision=None):
if precision:
self.set_precision(precision)
pts = self.pts_as_strs[self.thresholds >= threshold]
return '(%s)'%','.join(['%s %s'%(x,y) for x,y in pts])
def wkt_from_number(self,n,precision=None):
thresholds = self.ordered_thresholds
if n<3: n=3 #For polygons. TODO something better
try:
threshold = thresholds[int(n)]
except IndexError:
threshold = 0
return self.wkt_from_threshold(threshold,precision=precision)
def wkt_from_ratio(self,r,precision=None):
if r<=0 or r>1:
raise ValueError("Ratio must be 0<r<=1")
else:
return self.wkt_from_number(r*len(self.thresholds))
try:
from django.contrib.gis.gdal import OGRGeometry,OGRException
from django.contrib.gis.geos import GEOSGeometry, fromstr
except ImportError:
class GDALSimplifier(object):
'''Dummy object that would be replaced by a real one if
correct module exists'''
def __init__(*args,**kwargs):
print """
django.contrib.gis.gdal not found.
GDALSimplifier not available.
"""
else:
from json import loads
import re
p = re.compile( '([ 0123456789.]+) ([0123456789.]+)')
class GDALSimplifier(object):
'''Warning, there is a slight loss of precision just in the
conversion from geometry object to numpy.array even if no
threshold is applied. ie:
originalpolygeom.area -> 413962.65495176613
gdalsimplifierpoly.area -> 413962.65495339036
'''
def __init__(self,geom,precision=None,return_GDAL = True):
'''accepts a gdal.OGRGeometry or geos.GEOSGeometry
object and wraps multiple
VWSimplifiers. set return_GDAL to False for faster
filtering with arrays of floats returned instead of
geometry objects.'''
global p
self.return_GDAL = return_GDAL
if isinstance(geom,OGRGeometry):
name = geom.geom_name
self.Geometry = lambda w: OGRGeometry(w,srs=geom.srs)
self.pts = np.array(geom.tuple)
elif isinstance(geom,GEOSGeometry):
name = geom.geom_type.upper()
self.Geometry = lambda w: fromstr(w)
self.pts = np.array(geom.tuple)
elif isinstance(geom, unicode) or isinstance(geom,str):
#assume wkt
#for WKT
def str2tuple(q):
return '(%s,%s)' % (q.group(1),q.group(2))
self.return_GDAL = False #don't even try
self.Geometry = lambda w: w #this will never be used
name, pts = geom.split(' ',1)
self.pts = loads(p.sub(str2tuple,pts).\
replace('(','[').replace(')',']'))
self.precision = precision
if name == 'LINESTRING':
self.maskfunc = self.linemask
self.buildfunc = self.linebuild
self.fromnumfunc = self.notimplemented
elif name == "POLYGON":
self.maskfunc = self.polymask
self.buildfunc = self.polybuild
self.fromnumfunc = self.notimplemented
elif name == "MULTIPOLYGON":
self.maskfunc = self.multimask
self.buildfunc = self.multibuild
self.fromnumfunc = self.notimplemented
else:
raise OGRGeometryError("""
Only types LINESTRING, POLYGON and MULTIPOLYGON
supported, but got %s"""%name)
#sets self.simplifiers to a list of VWSimplifiers
self.buildfunc()
#rather than concise, I'd rather be explicit and clear.
def pt2str(self,pt):
'''make length 2 numpy.array.__str__() fit for wkt'''
return ' '.join(pt)
def linebuild(self):
self.simplifiers = [WKTSimplifier(self.pts)]
def line2wkt(self,pts):
return u'LINESTRING %s'%pts
def linemask(self,threshold):
get_pts = self.get_pts
pts = get_pts(self.simplifiers[0],threshold)
if self.return_GDAL:
return self.Geometry(self.line2wkt(pts))
else:
return pts
def polybuild(self):
list_of_pts = self.pts
result = []
for pts in list_of_pts:
result.append(WKTSimplifier(pts))
self.simplifiers = result
def poly2wkt(self,list_of_pts):
return u'POLYGON (%s)'%','.join(list_of_pts)
def polymask(self,threshold):
get_pts = self.get_pts
sims = self.simplifiers
list_of_pts = [get_pts(sim,threshold) for sim in sims]
if self.return_GDAL:
return self.Geometry(self.poly2wkt(list_of_pts))
else:
return array(list_of_pts)
def multibuild(self):
list_of_list_of_pts = self.pts
result = []
for list_of_pts in list_of_list_of_pts:
subresult = []
for pts in list_of_pts:
subresult.append(WKTSimplifier(pts))
result.append(subresult)
self.simplifiers = result
def multi2wkt(self,list_of_list_of_pts):
outerlist = []
for list_of_pts in list_of_list_of_pts:
outerlist.append('(%s)'%','.join(list_of_pts))
return u'MULTIPOLYGON (%s)'%','.join(outerlist)
def multimask(self,threshold):
loflofsims = self.simplifiers
result = []
get_pts = self.get_pts
if self.return_GDAL:
ret_func = lambda r: self.Geometry(self.multi2wkt(r))
else:
ret_func = lambda r: r
for list_of_simplifiers in loflofsims:
subresult = []
for simplifier in list_of_simplifiers:
subresult.append(get_pts(simplifier,threshold))
result.append(subresult)
return ret_func(result)
def notimplemented(self,n):
print "This function is not yet implemented"
def from_threshold(self,threshold):
precision = self.precision
if self.return_GDAL:
self.get_pts = lambda obj,t: obj.wkt_from_threshold(t,precision)
else:
self.get_pts = lambda obj,t: obj.from_threshold(t)
return self.maskfunc(threshold)
def from_number(self,n):
precision = self.precision
if self.return_GDAL:
self.get_pts = lambda obj,t: obj.wkt_from_number(t,precision)
else:
self.get_pts = lambda obj,t: obj.from_number(t)
return self.maskfunc(n)
def from_ratio(self,r):
precision = self.precision
if self.return_GDAL:
self.get_pts = lambda obj,t: obj.wkt_from_ratio(t,precision)
else:
self.get_pts = lambda obj,t: obj.from_ratio(t)
return self.maskfunc(r)
def fancy_parametric(k):
''' good k's: .33,.5,.65,.7,1.3,1.4,1.9,3,4,5'''
cos = np.cos
sin = np.sin
xt = lambda t: (k-1)*cos(t) + cos(t*(k-1))
yt = lambda t: (k-1)*sin(t) - sin(t*(k-1))
return xt,yt
if __name__ == "__main__":
from time import time
n = 5000
thetas = np.linspace(0,16*np.pi,n)
xt,yt = fancy_parametric(1.4)
pts = np.array([[xt(t),yt(t)] for t in thetas])
start = time()
simplifier = VWSimplifier(pts)
pts = simplifier.from_number(1000)
end = time()
print "%s vertices removed in %02f seconds"%(n-len(pts), end-start)
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as plot
plot.plot(pts[:,0],pts[:,1],color='r')
plot.savefig('visvalingam.png')
print "saved visvalingam.png"
#plot.show()