forked from anliyuan/Ultralight-Digital-Human
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpth2onnx.py
44 lines (37 loc) · 1.5 KB
/
pth2onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from unet import Model
import onnx
import torch
import onnxruntime
import numpy as np
import time
onnx_path = "./dihuman.onnx"
def check_onnx(torch_out, torch_in, audio):
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
import onnxruntime
providers = ["CUDAExecutionProvider"]
ort_session = onnxruntime.InferenceSession(onnx_path, providers=providers)
print(ort_session.get_providers())
ort_inputs = {ort_session.get_inputs()[0].name: torch_in.cpu().numpy(), ort_session.get_inputs()[1].name: audio.cpu().numpy()}
for i in range(1):
t1 = time.time()
ort_outs = ort_session.run(None, ort_inputs)
t2 = time.time()
print("onnx time cost::", t2 - t1)
np.testing.assert_allclose(torch_out[0].cpu().numpy(), ort_outs[0][0], rtol=1e-03, atol=1e-05)
print("Exported model has been tested with ONNXRuntime, and the result looks good!")
net = Model(6).eval()
net.load_state_dict(torch.load("20.pth"))
img = torch.zeros([1, 6, 160, 160])
audio = torch.zeros([1, 128, 16, 32])
input_dict = {"input": img, "audio": audio}
with torch.no_grad():
torch_out = net(img, audio)
print(torch_out.shape)
torch.onnx.export(net, (img, audio), onnx_path, input_names=['input', "audio"],
output_names=['output'],
# dynamic_axes=dynamic_axes,
# example_outputs=torch_out,
opset_version=11,
export_params=True)
check_onnx(torch_out, img, audio)