-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathexample_experiment.py
107 lines (88 loc) · 3.76 KB
/
example_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import logging
import os
import torch
import model_training.utils as utils
import torchvision.models as models
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from dotenv import load_dotenv
# the following code must be invoked before model_training imports
# because of env variables in related modules
load_dotenv('.env') # noqa: E402
from model_training.models.cnn.resnet import AdaptResNetBottleneck, ResNetCenterLoss
from model_training.preprocessors.datasets_builder import DatasetsBuilder
from model_training.dataset_loaders.facial_dataset import FacialDataset
from model_training.dataset_loaders.img_augmentor import Augmenter
from model_training.trainers.trainer import Trainer
from model_training.helpers.tensorboard_client import TensorboardClient
if __name__ == '__main__':
use_cuda = os.getenv('USE_GPU') == 'true' # noqa: E402
experiment_dir = os.path.join(os.getenv('WORKDIR'), __file__.split('.')[0].split('/')[-1])
utils.ensure_dir(experiment_dir)
logging.basicConfig(format='%(asctime)s:%(levelname)s: %(message)s',
level=logging.INFO,
handlers=[
logging.FileHandler(os.path.join(experiment_dir, 'logs.log')),
logging.StreamHandler()
])
labels_file = os.path.join(experiment_dir, 'labels.csv')
raw_dataset_dir = os.path.join(experiment_dir, 'raw_dataset')
utils.ensure_dir(raw_dataset_dir)
train_dataset_dir = os.path.join(experiment_dir, 'train_dataset')
utils.ensure_dir(train_dataset_dir)
val_dataset_dir = os.path.join(experiment_dir, 'val_dataset')
utils.ensure_dir(val_dataset_dir)
model_weights_dir = os.path.join(experiment_dir, 'model')
utils.ensure_dir(model_weights_dir)
datasets_builder = DatasetsBuilder(
datasets=[raw_dataset_dir],
train_dataset_path=train_dataset_dir,
val_dataset_path=val_dataset_dir,
val_split=0.1,
detection_margin=0.1,
use_cuda=use_cuda
)
datasets_builder.perform()
del datasets_builder
train_dataset = FacialDataset(
dataset_path=train_dataset_dir,
labels_file_path=labels_file,
transform=Augmenter(augmentation_rate=0.3)
)
train_dataset_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
val_dataset = FacialDataset(
dataset_path=val_dataset_dir,
labels_file_path=labels_file,
transform=Augmenter(augmentation_rate=0.3)
)
val_dataset_loader = DataLoader(val_dataset, batch_size=64, num_workers=4)
log_dir = os.path.join(experiment_dir, 'logs')
summary_writer = SummaryWriter(log_dir=log_dir)
tb_client = TensorboardClient(log_dir, port=int(os.getenv('TENSORBOARD_PORT', 5055)))
tb_client.run()
embedding_size = 256
num_classes = len(utils.labels_by_name(labels_file))
model = models.resnet50(num_classes=len(utils.labels_by_name(labels_file)))
adapted_model = AdaptResNetBottleneck(model, embedding_size, num_classes)
model_with_loss = ResNetCenterLoss(
adapted_model,
num_classes,
embedding_size,
center_loss_weight=0.001,
use_cuda=use_cuda,
summary_writer=summary_writer
)
optimizer = torch.optim.Adam(model_with_loss.parameters(), lr=0.001)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.5)
trainer = Trainer(
model=model_with_loss,
data_loaders={'train': train_dataset_loader, 'val': val_dataset_loader},
epochs=100,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
weights_path=model_weights_dir,
use_cuda=use_cuda,
log_per_batches=100,
save_per_batches=2000
)
trainer.perform()