-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimport_gtfs.py
executable file
·146 lines (132 loc) · 7.22 KB
/
import_gtfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import logging
from logging import Logger
import os
import sys
import requests
from typing import List, Optional
from slugify import slugify
from gtfs_functions import import_gtfs, stops_freq
from ipygis import get_connection_url
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from geoalchemy2.shape import from_shape
# test simple import now, convert to module later
sys.path.insert(0, "..")
from models import GTFSStop
GTFS_DATASETS = {
"Helsinki": "https://infopalvelut.storage.hsldev.com/gtfs/hsl.zip",
"Turku": "http://data.foli.fi/gtfs/gtfs.zip",
"Tampere": "http://data.itsfactory.fi/journeys/files/gtfs/latest/gtfs_tampere.zip",
"Warszawa": "https://mkuran.pl/gtfs/warsaw.zip",
"Copenhagen Municipality": "http://www.rejseplanen.info/labs/GTFS.zip",
"Tallinn": "http://www.peatus.ee/gtfs/gtfs.zip",
"Stockholms kommun": "https://data.samtrafiken.se/trafiklab/gtfs-sverige-2/2021/08/sweden-20210827.zip",
"Saint Petersburg": "https://transport.orgp.spb.ru/Portal/transport/internalapi/gtfs/feed.zip",
"Oslo": "https://storage.googleapis.com/marduk-production/outbound/gtfs/rb_norway-aggregated-gtfs.zip",
"Rīga": "https://data.gov.lv/dati/dataset/6d78358a-0095-4ce3-b119-6cde5d0ac54f/resource/612b7cd9-fac1-4fbc-889e-e27f1a9dcaa5/download/marsrutusaraksti08_2021.zip",
"Berlin": "https://www.vbb.de/fileadmin/user_upload/VBB/Dokumente/API-Datensaetze/GTFS.zip",
"Hamburg": "http://daten.transparenz.hamburg.de/Dataport.HmbTG.ZS.Webservice.GetRessource100/GetRessource100.svc/74444c22-a877-4cea-90bf-aa5c94c88ae8/Upload__HVV_Rohdaten_GTFS_Fpl_20210805.zip",
"Munich": "https://www.mvv-muenchen.de/fileadmin/mediapool/02-Fahrplanauskunft/03-Downloads/openData/mvv_gtfs.zip",
"Amsterdam": "http://gtfs.ovapi.nl/nl/gtfs-nl.zip",
"Vienna": "http://www.wienerlinien.at/ogd_realtime/doku/ogd/gtfs/gtfs.zip",
"Gdańsk": "https://mkuran.pl/gtfs/tristar.zip",
"Wrocław": "https://www.wroclaw.pl/open-data/87b09b32-f076-4475-8ec9-6020ed1f9ac0/OtwartyWroclaw_rozklad_jazdy_GTFS.zip",
"London": "https://storage.googleapis.com/teleport-gtfs/tflgtfs_nobus.zip",
"Greater Manchester": "https://odata.tfgm.com/opendata/downloads/TfGMgtfsnew.zip",
}
DATA_PATH = "data"
class GTFSImporter(object):
def __init__(self, slug: str, city: str, logger: Logger, url: str = "", bbox: List[float] = None, dataset_number: Optional[int] = None):
if not city or not slug:
raise AssertionError("You must specify the city name.")
self.city = city
# optional bbox allows filtering gtfs layer
self.bbox = bbox
# In some cases, we want to import multiple datasets. Keep the stop ids separate
# - If they are the same stop, frequencies will be summed in the same hex anyway.
# - In some cities, multiple stops by different companies in different places may share the same id.
self.dataset_number = dataset_number
self.logger = logger
if url:
self.url = url
else:
self.url = GTFS_DATASETS.get(city, None)
sql_url = get_connection_url(dbname="geoviz")
engine = create_engine(sql_url)
schema_engine = engine.execution_options(
schema_translate_map={'schema': slug}
)
self.session = sessionmaker(bind=schema_engine)()
# We may import multiple gtfs datasets to the same table.
if not self.dataset_number:
GTFSStop.__table__.drop(schema_engine, checkfirst=True)
GTFSStop.__table__.create(schema_engine, checkfirst=True)
def run(self):
if not self.url:
self.logger.error(f"GTFS data not found for {self.city}, skipping.")
return
# data should be stored one directory level above importers
# Reload the data from the URL, *don't* rely on saved zip if url is provided!!
# Note that we may have multiple gtfs feeds per city.
file_path = os.path.join(
os.path.dirname(os.path.dirname(__loader__.path)),
DATA_PATH
)
if self.dataset_number:
filename = os.path.join(file_path, f"{self.city}-{self.dataset_number}.gtfs.zip")
else:
filename = os.path.join(file_path, f"{self.city}.gtfs.zip")
self.logger.info("Downloading gtfs zip...")
response = requests.get(self.url, allow_redirects=True)
# always reload the GTFS feed, we don't want to save old feeds if new ones are present
with open(filename, 'wb') as file:
file.write(response.content)
self.logger.info("Loading gtfs zip...")
routes, stops, stop_times, trips, shapes = import_gtfs(filename)
# TODO: delete file after reading, we don't want to keep caching them all?
# This is the only large dataset we download separately. or is gtfs data valuable?
# only analyze stops within bbox, to cut down processing time
# luckily, we have nifty bbox filtering available for geodataframes
# https://geopandas.org/docs/user_guide/indexing.html
if self.bbox:
self.logger.info("Filtering gtfs data with bbox...")
self.logger.info(self.bbox)
stops = stops.cx[self.bbox[0]:self.bbox[2], self.bbox[1]:self.bbox[3]]
stop_times = stop_times.cx[self.bbox[0]:self.bbox[2], self.bbox[1]:self.bbox[3]]
# only calculate average daily frequency for all stops for now
cutoffs = [0, 24]
self.logger.info("Calculating stop frequencies...")
stop_frequencies = stops_freq(stop_times, stops, cutoffs)
# only consider outbound departures for now
outbound_frequencies = stop_frequencies.loc[
stop_frequencies["dir_id"] == "Outbound"
].to_dict(orient="records")
# Some feeds don't have two directions. In that case, all
# stops are inbound
if not outbound_frequencies:
outbound_frequencies = stop_frequencies.to_dict(orient="records")
stops_to_save = {}
self.logger.info(f"Found {len(outbound_frequencies)} GTFS stops, importing...")
for stop in outbound_frequencies:
stop_id = stop.pop("stop_id")
if self.dataset_number:
stop_id = f"{self.dataset_number}-{stop_id}"
geom = from_shape(stop.pop("geometry"), srid=4326)
# use dict, since the json may contain the same stop twice!
if stop_id in stops_to_save:
self.logger.info(f"Stop {stop_id} found twice, overwriting")
stops_to_save[stop_id] = GTFSStop(stop_id=stop_id, properties=stop, geom=geom)
self.logger.info(f"Saving {len(stops_to_save)} GTFS stops...")
self.session.bulk_save_objects(stops_to_save.values())
self.session.commit()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Import GTFS data for given city or URL")
parser.add_argument("--city", default="Helsinki", help="City to import")
parser.add_argument("--url", default=None, help="GTFS url to import")
args = vars(parser.parse_args())
arg_city = args.get("city", None)
arg_slug = slugify(arg_city)
arg_url = args.get("url", None)
importer = GTFSImporter(arg_slug, arg_city, logging.getLogger("import"), arg_url)
importer.run()