Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Include materialized pipelines in explain output #3351

Open
scsmithr opened this issue Sep 20, 2024 · 0 comments
Open

Include materialized pipelines in explain output #3351

scsmithr opened this issue Sep 20, 2024 · 0 comments

Comments

@scsmithr
Copy link
Member

Currently just including the local/remote groups which reference materializations, but materializations aren't displayed:

---- EXPLAIN ----
SELECT
    s_acctbal,
    s_name,
    n_name,
    p_partkey,
    p_mfgr,
    s_address,
    s_phone,
    s_comment
FROM
    '../submodules/testdata/tpch_sf0.1/part.parquet'      part,
    '../submodules/testdata/tpch_sf0.1/supplier.parquet'  supplier,
    '../submodules/testdata/tpch_sf0.1/partsupp.parquet'  partsupp,
    '../submodules/testdata/tpch_sf0.1/nation.parquet'    nation,
    '../submodules/testdata/tpch_sf0.1/region.parquet'    region
WHERE
    p_partkey = ps_partkey
    AND s_suppkey = ps_suppkey
    AND p_size = 15
    AND p_type LIKE '%BRASS'
    AND s_nationkey = n_nationkey
    AND n_regionkey = r_regionkey
    AND r_name = 'EUROPE'
    AND ps_supplycost = (
        SELECT
            min(ps_supplycost)
        FROM
            '../submodules/testdata/tpch_sf0.1/partsupp.parquet'  partsupp,
            '../submodules/testdata/tpch_sf0.1/supplier.parquet'  supplier,
            '../submodules/testdata/tpch_sf0.1/nation.parquet'    nation,
            '../submodules/testdata/tpch_sf0.1/region.parquet'    region
        WHERE
            p_partkey = ps_partkey
            AND s_suppkey = ps_suppkey
            AND s_nationkey = n_nationkey
            AND n_regionkey = r_regionkey
            AND r_name = 'EUROPE')
ORDER BY
    s_acctbal DESC,
    n_name,
    s_name,
    p_partkey
LIMIT 100;
┌───────────┬─────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ plan_type │ plan                                                                                                    │
│ Utf8      │ Utf8                                                                                                    │
├───────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ unoptimi… │ Project (location = Any, projections = [#5.0, GlareDB/glaredb_next#5.1, GlareDB/glaredb_next#5.2, GlareDB/glaredb_next#5.3, GlareDB/glaredb_next#5.4, GlareDB/glaredb_next#5.5, GlareDB/glaredb_next#5.6, GlareDB/glaredb_next#5.7], table_ref =    │
│           │ GlareDB/glaredb_next#14)                                                                                                    │
│           │   Limit (limit = 100, location = Any)                                                                   │
│           │     Order (expressions = [#5.8 desc nulls_first, GlareDB/glaredb_next#5.9 asc nulls_first, GlareDB/glaredb_next#5.10 asc nulls_first, GlareDB/glaredb_next#5.11 asc │
│           │ nulls_first], location = Any)                                                                           │
│           │       Project (location = Any, projections = [#1.5, GlareDB/glaredb_next#1.1, GlareDB/glaredb_next#3.1, #0.0, #0.2, GlareDB/glaredb_next#1.2, GlareDB/glaredb_next#1.4, GlareDB/glaredb_next#1.6, GlareDB/glaredb_next#1.5,     │
│           │ GlareDB/glaredb_next#3.1, GlareDB/glaredb_next#1.1, #0.0], table_ref = GlareDB/glaredb_next#5)                                                                      │
│           │         Filter (location = Any, predicate = #0.0 = GlareDB/glaredb_next#2.0 AND GlareDB/glaredb_next#1.0 = GlareDB/glaredb_next#2.1 AND CAST(#0.5 TO Int64) = 15    │
│           │ AND ends_with(#0.4, '%BRASS') AND GlareDB/glaredb_next#1.3 = GlareDB/glaredb_next#3.0 AND GlareDB/glaredb_next#3.2 = GlareDB/glaredb_next#4.0 AND GlareDB/glaredb_next#4.1 = 'EUROPE' AND GlareDB/glaredb_next#2.3 = GlareDB/glaredb_next#10.0)     │
│           │           ComparisonJoin (conditions = [#0.0 = GlareDB/glaredb_next#10.1], join_type = LEFT, location = Any)                │
│           │             MaterializationScan (location = Any, materialization_ref = MAT_0, table_refs = [#0, GlareDB/glaredb_next#1, GlareDB/glaredb_next#2, │
│           │ GlareDB/glaredb_next#3, GlareDB/glaredb_next#4])                                                                                                │
│           │               CrossJoin (location = Any)                                                                │
│           │                 Scan (column_names = [p_partkey, p_name, p_mfgr, p_brand, p_type, p_size, p_container,  │
│           │ p_retailprice, p_comment], column_types = [Int32, Utf8, Utf8, Utf8, Utf8, Int32, Utf8, Decimal64(15,2), │
│           │ Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, 4, 5, 6, 7, 8],  │
│           │ table_ref = #0)                                                                                         │
│           │                 CrossJoin (location = Any)                                                              │
│           │                   Scan (column_names = [s_suppkey, s_name, s_address, s_nationkey, s_phone, s_acctbal,  │
│           │ s_comment], column_types = [Int32, Utf8, Utf8, Int32, Utf8, Decimal64(15,2), Utf8], function_name =     │
│           │ read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, 4, 5, 6], table_ref = GlareDB/glaredb_next#1)               │
│           │                   CrossJoin (location = Any)                                                            │
│           │                     Scan (column_names = [ps_partkey, ps_suppkey, ps_availqty, ps_supplycost,           │
│           │ ps_comment], column_types = [Int32, Int32, Int32, Decimal64(15,2), Utf8], function_name = read_parquet, │
│           │ location = ClientLocal, projection = [0, 1, 2, 3, 4], table_ref = GlareDB/glaredb_next#2)                                   │
│           │                     CrossJoin (location = Any)                                                          │
│           │                       Scan (column_names = [n_nationkey, n_name, n_regionkey, n_comment], column_types  │
│           │ = [Int32, Utf8, Int32, Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, │
│           │ 2, 3], table_ref = GlareDB/glaredb_next#3)                                                                                  │
│           │                       Scan (column_names = [r_regionkey, r_name, r_comment], column_types = [Int32,     │
│           │ Utf8, Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2], table_ref =  │
│           │ GlareDB/glaredb_next#4)                                                                                                     │
│           │             Project (location = Any, projections = [#11.0, GlareDB/glaredb_next#17.0], table_ref = GlareDB/glaredb_next#10)                     │
│           │               Aggregate (aggregates = [min(#6.3)], group_expressions = [#0.0], group_table_ref = GlareDB/glaredb_next#17,   │
│           │ location = Any, table_ref = GlareDB/glaredb_next#11)                                                                        │
│           │                 Filter (location = Any, predicate = #0.0 = GlareDB/glaredb_next#6.0 AND GlareDB/glaredb_next#7.0 = GlareDB/glaredb_next#6.1 AND GlareDB/glaredb_next#7.3 = GlareDB/glaredb_next#8.0 AND     │
│           │ GlareDB/glaredb_next#8.2 = GlareDB/glaredb_next#9.0 AND GlareDB/glaredb_next#9.1 = 'EUROPE')                                                                        │
│           │                   CrossJoin (location = Any)                                                            │
│           │                     CrossJoin (location = Any)                                                          │
│           │                       Scan (column_names = [ps_partkey, ps_suppkey, ps_availqty, ps_supplycost,         │
│           │ ps_comment], column_types = [Int32, Int32, Int32, Decimal64(15,2), Utf8], function_name = read_parquet, │
│           │ location = ClientLocal, projection = [0, 1, 2, 3, 4], table_ref = GlareDB/glaredb_next#6)                                   │
│           │                       CrossJoin (location = Any)                                                        │
│           │                         Scan (column_names = [s_suppkey, s_name, s_address, s_nationkey, s_phone,       │
│           │ s_acctbal, s_comment], column_types = [Int32, Utf8, Utf8, Int32, Utf8, Decimal64(15,2), Utf8],          │
│           │ function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, 4, 5, 6], table_ref =   │
│           │ GlareDB/glaredb_next#7)                                                                                                     │
│           │                         CrossJoin (location = Any)                                                      │
│           │                           Scan (column_names = [n_nationkey, n_name, n_regionkey, n_comment],           │
│           │ column_types = [Int32, Utf8, Int32, Utf8], function_name = read_parquet, location = ClientLocal,        │
│           │ projection = [0, 1, 2, 3], table_ref = GlareDB/glaredb_next#8)                                                              │
│           │                           Scan (column_names = [r_regionkey, r_name, r_comment], column_types = [Int32, │
│           │ Utf8, Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2], table_ref =  │
│           │ GlareDB/glaredb_next#9)                                                                                                     │
│           │                     Distinct (location = Any, on = [#0.0])                                              │
│           │                       MaterializationScan (location = Any, materialization_ref = MAT_0, table_refs =    │
│           │ [#0, GlareDB/glaredb_next#1, GlareDB/glaredb_next#2, GlareDB/glaredb_next#3, GlareDB/glaredb_next#4])                                                                                   │
│           │                         CrossJoin (location = Any)                                                      │
│           │                           Scan (column_names = [p_partkey, p_name, p_mfgr, p_brand, p_type, p_size,     │
│           │ p_container, p_retailprice, p_comment], column_types = [Int32, Utf8, Utf8, Utf8, Utf8, Int32, Utf8,     │
│           │ Decimal64(15,2), Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, │
│           │ 4, 5, 6, 7, 8], table_ref = #0)                                                                         │
│           │                           CrossJoin (location = Any)                                                    │
│           │                             Scan (column_names = [s_suppkey, s_name, s_address, s_nationkey, s_phone,   │
│           │ s_acctbal, s_comment], column_types = [Int32, Utf8, Utf8, Int32, Utf8, Decimal64(15,2), Utf8],          │
│           │ function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, 4, 5, 6], table_ref =   │
│           │ GlareDB/glaredb_next#1)                                                                                                     │
│           │                             CrossJoin (location = Any)                                                  │
│           │                               Scan (column_names = [ps_partkey, ps_suppkey, ps_availqty, ps_supplycost, │
│           │ ps_comment], column_types = [Int32, Int32, Int32, Decimal64(15,2), Utf8], function_name = read_parquet, │
│           │ location = ClientLocal, projection = [0, 1, 2, 3, 4], table_ref = GlareDB/glaredb_next#2)                                   │
│           │                               CrossJoin (location = Any)                                                │
│           │                                 Scan (column_names = [n_nationkey, n_name, n_regionkey, n_comment],     │
│           │ column_types = [Int32, Utf8, Int32, Utf8], function_name = read_parquet, location = ClientLocal,        │
│           │ projection = [0, 1, 2, 3], table_ref = GlareDB/glaredb_next#3)                                                              │
│           │                                 Scan (column_names = [r_regionkey, r_name, r_comment], column_types =   │
│           │ [Int32, Utf8, Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2],      │
│           │ table_ref = GlareDB/glaredb_next#4)                                                                                         │
│           │                                                                                                         │
│ optimized │ Project (location = Any, projections = [#5.0, GlareDB/glaredb_next#5.1, GlareDB/glaredb_next#5.2, GlareDB/glaredb_next#5.3, GlareDB/glaredb_next#5.4, GlareDB/glaredb_next#5.5, GlareDB/glaredb_next#5.6, GlareDB/glaredb_next#5.7], table_ref =    │
│           │ GlareDB/glaredb_next#14)                                                                                                    │
│           │   Limit (limit = 100, location = Any)                                                                   │
│           │     Order (expressions = [#5.8 desc nulls_first, GlareDB/glaredb_next#5.9 asc nulls_first, GlareDB/glaredb_next#5.10 asc nulls_first, GlareDB/glaredb_next#5.11 asc │
│           │ nulls_first], location = Any)                                                                           │
│           │       Project (location = Any, projections = [#1.5, GlareDB/glaredb_next#1.1, GlareDB/glaredb_next#3.1, #0.0, #0.2, GlareDB/glaredb_next#1.2, GlareDB/glaredb_next#1.4, GlareDB/glaredb_next#1.6, GlareDB/glaredb_next#1.5,     │
│           │ GlareDB/glaredb_next#3.1, GlareDB/glaredb_next#1.1, #0.0], table_ref = GlareDB/glaredb_next#5)                                                                      │
│           │         Filter (location = Any, predicate = #0.0 = GlareDB/glaredb_next#2.0 AND GlareDB/glaredb_next#1.0 = GlareDB/glaredb_next#2.1 AND CAST(#0.5 TO Int64) = 15    │
│           │ AND ends_with(#0.4, '%BRASS') AND GlareDB/glaredb_next#1.3 = GlareDB/glaredb_next#3.0 AND GlareDB/glaredb_next#3.2 = GlareDB/glaredb_next#4.0 AND GlareDB/glaredb_next#4.1 = 'EUROPE' AND GlareDB/glaredb_next#2.3 = GlareDB/glaredb_next#10.0)     │
│           │           ComparisonJoin (conditions = [#0.0 = GlareDB/glaredb_next#10.1], join_type = LEFT, location = Any)                │
│           │             MaterializationScan (location = Any, materialization_ref = MAT_0, table_refs = [#0, GlareDB/glaredb_next#1, GlareDB/glaredb_next#2, │
│           │ GlareDB/glaredb_next#3, GlareDB/glaredb_next#4])                                                                                                │
│           │               CrossJoin (location = Any)                                                                │
│           │                 Scan (column_names = [p_partkey, p_name, p_mfgr, p_brand, p_type, p_size, p_container,  │
│           │ p_retailprice, p_comment], column_types = [Int32, Utf8, Utf8, Utf8, Utf8, Int32, Utf8, Decimal64(15,2), │
│           │ Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, 4, 5, 6, 7, 8],  │
│           │ table_ref = #0)                                                                                         │
│           │                 CrossJoin (location = Any)                                                              │
│           │                   Scan (column_names = [s_suppkey, s_name, s_address, s_nationkey, s_phone, s_acctbal,  │
│           │ s_comment], column_types = [Int32, Utf8, Utf8, Int32, Utf8, Decimal64(15,2), Utf8], function_name =     │
│           │ read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, 4, 5, 6], table_ref = GlareDB/glaredb_next#1)               │
│           │                   CrossJoin (location = Any)                                                            │
│           │                     Scan (column_names = [ps_partkey, ps_suppkey, ps_availqty, ps_supplycost,           │
│           │ ps_comment], column_types = [Int32, Int32, Int32, Decimal64(15,2), Utf8], function_name = read_parquet, │
│           │ location = ClientLocal, projection = [0, 1, 2, 3, 4], table_ref = GlareDB/glaredb_next#2)                                   │
│           │                     CrossJoin (location = Any)                                                          │
│           │                       Scan (column_names = [n_nationkey, n_name, n_regionkey, n_comment], column_types  │
│           │ = [Int32, Utf8, Int32, Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, │
│           │ 2, 3], table_ref = GlareDB/glaredb_next#3)                                                                                  │
│           │                       Scan (column_names = [r_regionkey, r_name, r_comment], column_types = [Int32,     │
│           │ Utf8, Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2], table_ref =  │
│           │ GlareDB/glaredb_next#4)                                                                                                     │
│           │             Project (location = Any, projections = [#11.0, GlareDB/glaredb_next#17.0], table_ref = GlareDB/glaredb_next#10)                     │
│           │               Aggregate (aggregates = [min(#6.3)], group_expressions = [#0.0], group_table_ref = GlareDB/glaredb_next#17,   │
│           │ location = Any, table_ref = GlareDB/glaredb_next#11)                                                                        │
│           │                 ComparisonJoin (conditions = [#6.0 = #0.0], join_type = INNER, location = Any)          │
│           │                   ComparisonJoin (conditions = [#6.1 = GlareDB/glaredb_next#7.0], join_type = INNER, location = Any)        │
│           │                     Scan (column_names = [ps_partkey, ps_suppkey, ps_availqty, ps_supplycost,           │
│           │ ps_comment], column_types = [Int32, Int32, Int32, Decimal64(15,2), Utf8], function_name = read_parquet, │
│           │ location = ClientLocal, projection = [0, 1, 2, 3, 4], table_ref = GlareDB/glaredb_next#6)                                   │
│           │                     ComparisonJoin (conditions = [#7.3 = GlareDB/glaredb_next#8.0], join_type = INNER, location = Any)      │
│           │                       Scan (column_names = [s_suppkey, s_name, s_address, s_nationkey, s_phone,         │
│           │ s_acctbal, s_comment], column_types = [Int32, Utf8, Utf8, Int32, Utf8, Decimal64(15,2), Utf8],          │
│           │ function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, 4, 5, 6], table_ref =   │
│           │ GlareDB/glaredb_next#7)                                                                                                     │
│           │                       ComparisonJoin (conditions = [#8.2 = GlareDB/glaredb_next#9.0], join_type = INNER, location = Any)    │
│           │                         Scan (column_names = [n_nationkey, n_name, n_regionkey, n_comment],             │
│           │ column_types = [Int32, Utf8, Int32, Utf8], function_name = read_parquet, location = ClientLocal,        │
│           │ projection = [0, 1, 2, 3], table_ref = GlareDB/glaredb_next#8)                                                              │
│           │                         Filter (location = Any, predicate = GlareDB/glaredb_next#9.1 = 'EUROPE')                            │
│           │                           Scan (column_names = [r_regionkey, r_name, r_comment], column_types = [Int32, │
│           │ Utf8, Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2], table_ref =  │
│           │ GlareDB/glaredb_next#9)                                                                                                     │
│           │                   Distinct (location = Any, on = [#0.0])                                                │
│           │                     MaterializationScan (location = Any, materialization_ref = MAT_0, table_refs = [#0, │
│           │ GlareDB/glaredb_next#1, GlareDB/glaredb_next#2, GlareDB/glaredb_next#3, GlareDB/glaredb_next#4])                                                                                        │
│           │                       CrossJoin (location = Any)                                                        │
│           │                         Scan (column_names = [p_partkey, p_name, p_mfgr, p_brand, p_type, p_size,       │
│           │ p_container, p_retailprice, p_comment], column_types = [Int32, Utf8, Utf8, Utf8, Utf8, Int32, Utf8,     │
│           │ Decimal64(15,2), Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, │
│           │ 4, 5, 6, 7, 8], table_ref = #0)                                                                         │
│           │                         CrossJoin (location = Any)                                                      │
│           │                           Scan (column_names = [s_suppkey, s_name, s_address, s_nationkey, s_phone,     │
│           │ s_acctbal, s_comment], column_types = [Int32, Utf8, Utf8, Int32, Utf8, Decimal64(15,2), Utf8],          │
│           │ function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2, 3, 4, 5, 6], table_ref =   │
│           │ GlareDB/glaredb_next#1)                                                                                                     │
│           │                           CrossJoin (location = Any)                                                    │
│           │                             Scan (column_names = [ps_partkey, ps_suppkey, ps_availqty, ps_supplycost,   │
│           │ ps_comment], column_types = [Int32, Int32, Int32, Decimal64(15,2), Utf8], function_name = read_parquet, │
│           │ location = ClientLocal, projection = [0, 1, 2, 3, 4], table_ref = GlareDB/glaredb_next#2)                                   │
│           │                             CrossJoin (location = Any)                                                  │
│           │                               Scan (column_names = [n_nationkey, n_name, n_regionkey, n_comment],       │
│           │ column_types = [Int32, Utf8, Int32, Utf8], function_name = read_parquet, location = ClientLocal,        │
│           │ projection = [0, 1, 2, 3], table_ref = GlareDB/glaredb_next#3)                                                              │
│           │                               Scan (column_names = [r_regionkey, r_name, r_comment], column_types =     │
│           │ [Int32, Utf8, Utf8], function_name = read_parquet, location = ClientLocal, projection = [0, 1, 2],      │
│           │ table_ref = GlareDB/glaredb_next#4)                                                                                         │
│           │                                                                                                         │
│ physical  │ IntermediatePipelineGroups                                                                              │
│           │   IntermediatePipelineGroup local                                                                       │
│           │     IntermediatePipeline 9 (Sink = InGroup {pipeline_id: 6, operator_idx: 4, input_idx: 0}, Source =    │
│           │ InPipeline)                                                                                             │
│           │       TableFunction (partitioning_requirement = None)                                                   │
│           │     IntermediatePipeline 6 (Sink = InGroup {pipeline_id: 5, operator_idx: 0, input_idx: 0}, Source =    │
│           │ InPipeline)                                                                                             │
│           │       TableFunction (partitioning_requirement = None)                                                   │
│           │       Filter (partitioning_requirement = None, predicate = =(@1, EUROPE))                               │
│           │       HashJoin (conditions = [(LEFT @2) = (RIGHT @0)], equality = (LEFT @2) = (RIGHT @0), join_type =   │
│           │ INNER, partitioning_requirement = None)                                                                 │
│           │       HashJoin (conditions = [(LEFT @3) = (RIGHT @0)], equality = (LEFT @3) = (RIGHT @0), join_type =   │
│           │ INNER, partitioning_requirement = None)                                                                 │
│           │       HashJoin (conditions = [(LEFT @1) = (RIGHT @0)], equality = (LEFT @1) = (RIGHT @0), join_type =   │
│           │ INNER, partitioning_requirement = None)                                                                 │
│           │     IntermediatePipeline 7 (Sink = InGroup {pipeline_id: 6, operator_idx: 2, input_idx: 0}, Source =    │
│           │ InPipeline)                                                                                             │
│           │       TableFunction (partitioning_requirement = None)                                                   │
│           │     IntermediatePipeline 5 (Sink = InPipeline, Source = Materialization {materialization_ref: MAT_0})   │
│           │       HashJoin (conditions = [(LEFT @0) = (RIGHT @0)], equality = (LEFT @0) = (RIGHT @0), join_type =   │
│           │ INNER, partitioning_requirement = None)                                                                 │
│           │       Project (partitioning_requirement = None, projections = [@3, @19])                                │
│           │       HashAggregate (aggregate_columns = [0], partitioning_requirement = None)                          │
│           │       Project (partitioning_requirement = None, projections = [@0, @1])                                 │
│           │       HashJoin (conditions = [(LEFT @0) = (RIGHT @1)], equality = (LEFT @0) = (RIGHT @1), join_type =   │
│           │ LEFT, partitioning_requirement = None)                                                                  │
│           │       Filter (partitioning_requirement = None, predicate = and(and(and(and(and(and(and(=(@0, @16),      │
│           │ =(@9, @17)), =(CAST(@5 TO Int64), 15)), ends_with(@4, %BRASS)), =(@12, @21)), =(@23, @25)), =(@26,      │
│           │ EUROPE)), =(@19, @28)))                                                                                 │
│           │       Project (partitioning_requirement = None, projections = [@14, @10, @22, @0, @2, @11, @13, @15,    │
│           │ @14, @22, @10, @0])                                                                                     │
│           │       LocalSort (partitioning_requirement = None)                                                       │
│           │       MergeSorted (partitioning_requirement = None)                                                     │
│           │     IntermediatePipeline 8 (Sink = InGroup {pipeline_id: 6, operator_idx: 3, input_idx: 0}, Source =    │
│           │ InPipeline)                                                                                             │
│           │       TableFunction (partitioning_requirement = None)                                                   │
│           │     IntermediatePipeline 10 (Sink = InGroup {pipeline_id: 5, operator_idx: 4, input_idx: 0}, Source =   │
│           │ Materialization {materialization_ref: MAT_0})                                                           │
│           │     IntermediatePipeline 11 (Sink = QueryOutput, Source = OtherPipeline {pipeline_id: 5})               │
│           │       Limit (limit = 100, partitioning_requirement = Some(1))                                           │
│           │       Project (partitioning_requirement = None, projections = [@0, @1, @2, @3, @4, @5, @6, @7])         │
│           │   IntermediatePipelineGroup remote                                                                      │
│           │                                                                                                         │
└───────────┴─────────────────────────────────────────────────────────────────────────────────────────────────────────┘
@scsmithr scsmithr transferred this issue from GlareDB/glaredb_next Dec 9, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant