predictor_tool.py: for the prediction of carbohydrate binding residues on a given protein.
This is the main carbohydrate binding site prediction utility.
>> python predictor_tool.py.py
This code will predict the carbohydrate binding residues on input protein.
If carbohydrate residues are present in input PDB file, this code will calculate the DICE and show other details.
- Prediction of binding site on a single pdb.
For locally avilable pdb file
>> python predictor_tool.py <pdbfile with path>
For pdb file direct from RCSB
>> python predictor_tool.py RCSB:<PDB ID>
- Run as a prediction server for multiple pdbs
>> python predictor_tool.py
Predicted residues on the input protein can be seen on the fly using UCSF Chimera (should be accessible by 'chimera' command in shell. (Linux))
- All test data set at once:
>> ./predictor.py
- Try on one PDB:
>> ./predictor_on_pdb2.py
-
For one prediction
>> ./predictor_on_pdb2.py <pdbfile>
-
for multiple prediction
>> ./predictor_on_pdb2.py
[This command loads model and waits for pdbs for prediction]
-
-
Identify Rosetta readable PDB files using:
data_preparation/pyrosetta_readable_finding.py
-
Randomly separate PDB files to Train, Test, and Val types.
####Use np.random.permutation for random indexing and select segments as per your given ratio. or use:####data_preparation/make_train_and_test_random.py
-
Make simplified pdb data for train/test/val pdbs using
data_preparation/pdb_2_interaction_file_converter.py
-
modify train.py for training and validation directories:
[currently set for default data given in dataset directory] -
Train model using train.py
[Download pre-trained model for the given data.]
For GrayLab: get models from louis /mnt/share/carbohydrate/sudhanshu/MODEL_29
Current best training model: ./
Best model using validation data: ./models_DL/
Stepwise accuracy: ./Reports/report_xxxx
-
Data analysis:
- For unequal-edge-sized first voxelized data:
>> ./plot_npy_data.py <voxel_protein> <voxel_protein>
- For cube voxels:
>> plot_npy_data.py <voxel_protein> <voxel_mask>
- For real and predicted voxels: (in saved_masks)
>> plot_npy_data.py <voxel_protein> <voxel_mask> <voxel_mask_predicted>