-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathscore_sequences.py
48 lines (39 loc) · 1.66 KB
/
score_sequences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import os
import sys
import pandas as pd
from utils.metrics import score_sequences
from utils.command_line_utils import _get_args
from utils.prepare_model_inputs_from_pdb import get_protein_info_from_pdb_file,\
get_antibody_info_from_pdb_file
from src.model.ProteinMaskedLabelModel_EnT_MA import ProteinMaskedLabelModel_EnT_MA
from src.data.constants import letter_to_num, _aa_dict
import warnings
warnings.filterwarnings("ignore")
torch.set_default_dtype(torch.float64)
torch.set_grad_enabled(False)
device_type = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device_type)
def sequences_to_labels(sequence_file):
with open(sequence_file, 'r') as f:
sequences = [t.rstrip() for t in f.readlines()]
labels = []
for seq in sequences:
labels.append(torch.tensor(letter_to_num(seq, _aa_dict)).long())
return labels, sequences
def score_antibody_sequences(pdb_file, sequence_file, model, outfile='scores.csv'):
batch = get_antibody_info_from_pdb_file(pdb_file)
sequence_labels, sequences = sequences_to_labels(sequence_file)
score_dict = score_sequences(batch, sequence_labels, model)
df = pd.DataFrame()
df['Sequences'] = sequences
df['Scores'] = score_dict['scores']
df.to_csv(outfile, index=False)
if __name__ == '__main__':
args = _get_args()
model = ProteinMaskedLabelModel_EnT_MA.load_from_checkpoint(args.model).to(device)
model.freeze()
outfile=os.path.join(args.output_dir, 'sequence_scores.csv')
assert os.path.exists(args.pdb_file)
assert os.path.exists(args.sequences_file)
score_antibody_sequences(args.pdb_file, args.sequences_file, model, outfile)