-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference.py
69 lines (52 loc) · 2.37 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import glob
import argparse
from tqdm import tqdm
import torch
from torchvision import transforms as T
from PIL import Image
from psstrnet import PSSTRNet
to_tensor = T.ToTensor()
to_pil_image = T.ToPILImage()
# Downsample the input image to reduce memory usage
def load_and_preprocess_image(image_path, size=(1024, 1024)):
img = Image.open(image_path).convert('RGB')
img = img.resize(size)
img = to_tensor(img).float()
img = torch.unsqueeze(img, 0)
return img
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process images for OCR using Doctr.')
parser.add_argument('--image_source', '-i', type=str, required=True, help='Path to an image or an image folder.')
parser.add_argument('--output_dir', '-o', type=str, default='./results', help='Directory to save the output images.')
parser.add_argument('--model_path', '-m', type=str, default='./scut_syn.pth', help='Path to the model checkpoint.')
parser.add_argument('--device', type=str, default='cuda', help='Device to use for computation (e.g., "cuda" or "cpu").')
args = parser.parse_args()
G = PSSTRNet()
ckpt_dict = torch.load(args.model_path)
G.load_state_dict(ckpt_dict['model_state_dict'])
G = G.to(args.device)
G.eval()
image_source = args.image_source
if os.path.exists(image_source):
output_dir = args.output_dir
mask_dir = os.path.join(output_dir, "masks")
image_dir = os.path.join(output_dir, "images")
os.makedirs(mask_dir, exist_ok=True)
os.makedirs(image_dir, exist_ok=True)
if os.path.isdir(image_source):
image_paths = glob.glob(os.path.join(image_source, "*"))
else:
image_paths = [image_source]
for image_path in tqdm(image_paths):
basename = os.path.basename(image_path).split(".")[0]
image = load_and_preprocess_image(image_path)
with torch.no_grad():
image = image.to(args.device)
_, _, _, str_out, _, _, _, mask_out = G(image)
output_image = to_pil_image(str_out[0])
mask = to_pil_image(mask_out[0])
output_image.save(os.path.join(image_dir, f"{basename}.png"))
mask.save(os.path.join(mask_dir, f"{basename}.png"))
else:
raise OSError(f"The provided input source dosen't exist.")