-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmxkrt.F90
1260 lines (1258 loc) · 40.4 KB
/
mxkrt.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#if defined(ROW_LAND)
#define SEA_P .true.
#define SEA_U .true.
#define SEA_V .true.
#elif defined(ROW_ALLSEA)
#define SEA_P allip(j).or.ip(i,j).ne.0
#define SEA_U alliu(j).or.iu(i,j).ne.0
#define SEA_V alliv(j).or.iv(i,j).ne.0
#else
#define SEA_P ip(i,j).ne.0
#define SEA_U iu(i,j).ne.0
#define SEA_V iv(i,j).ne.0
#endif
subroutine mxkrta(m,n)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n
!
! --- hycom version 1.0
! --- original slab mixed layer
!
#if defined(RELO)
real, save, allocatable, dimension(:,:) :: &
#else
real, save, dimension(1-nbdy:idm+nbdy,1-nbdy:jdm+nbdy) :: &
#endif
depnew
!
integer i,j
!diag integer k
!diag real totem,tosal,tndcyt,tndcys
!
! --- store 'old' t/s column integral in totem/tosal (diagnostic use only)
!
!diag totem=0.
!diag tosal=0.
!diag do k=1,kk
!diag totem=totem+temp(itest,jtest,k,n)*dp(itest,jtest,k,n)
!diag tosal=tosal+saln(itest,jtest,k,n)*dp(itest,jtest,k,n)
!diag end do
!
103 format (i9,2i5,a/(32x,i3,2f8.2,f8.2,2f8.1))
!diag write (lp,103) nstep,itest+i0,jtest+j0, &
!diag ' entering mxkrt: temp saln dens thkns dpth', &
!diag (k,temp(itest,jtest,k,n),saln(itest,jtest,k,n), &
!diag th3d(itest,jtest,k,n)+thbase,dp(itest,jtest,k,n)*qonem, &
!diag p(itest,jtest,k+1)*qonem,k=1,kk)
#if defined(RELO)
!
if (.not.allocated(depnew)) then
allocate( &
depnew(1-nbdy:idm+nbdy,1-nbdy:jdm+nbdy) )
call mem_stat_add( (idm+2*nbdy)*(jdm+2*nbdy) )
depnew = r_init
endif
#endif
! --- ---------------
! --- new mixed layer
! --- ---------------
!
!$OMP PARALLEL DO PRIVATE(j) &
!$OMP SHARED(m,n) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
call mxkrtaaj(m,n, j, depnew)
enddo
!$OMP END PARALLEL DO
!
!diag write (lp,103) nstep,itest,jtest, &
!diag ' exiting mxkrta: temp saln dens thkns dpth', &
!diag (k,temp(itest,jtest,k,n),saln(itest,jtest,k,n), &
!diag th3d(itest,jtest,k,n)+thbase,dp(itest,jtest,k,n)*qonem, &
!diag p(itest,jtest,k+1)*qonem,k=1,kk)
!
! --- compare 'old' with 'new' t/s column integral (diagnostic use only)
!
!diag tndcyt=-totem
!diag tndcys=-tosal
!diag do k=1,kk
!diag tndcyt=tndcyt+temp(itest,jtest,k,n)*dp(itest,jtest,k,n)
!diag tndcys=tndcys+saln(itest,jtest,k,n)*dp(itest,jtest,k,n)
!diag end do
!diag write (lp,'(i9,2i5,3x,a,1p,3e12.4/22x,a,3e12.4)') &
!diag nstep,itest+i0,jtest+j0, &
!diag 'total saln,srf.flux,tndcy:',tosal/g,salflx(itest, &
!diag jtest)*delt1,tndcys/g,'total temp,srf.flux,tndcy:',totem/g, &
!diag surflx(itest,jtest)*delt1,tndcyt*spcifh/g
!
! --- ---------------
! --- momentum mixing
! --- ---------------
!
!$OMP PARALLEL DO PRIVATE(j) &
!$OMP SHARED(m,n) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
call mxkrtabj(m,n, j, depnew)
enddo
!$OMP END PARALLEL DO
!
! --- fill mixed layer arrays
!
!$OMP PARALLEL DO PRIVATE(j,i) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
dpbl( i,j)=dpmixl(i,j, n)
tmix( i,j)=temp(i,j,1,n)
smix( i,j)=saln(i,j,1,n)
thmix(i,j)=th3d(i,j,1,n)
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
!
return
end
subroutine mxkrtaaj(m,n, j, depnew)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n,j
real, dimension (1-nbdy:idm+nbdy,1-nbdy:jdm+nbdy) :: &
depnew
!
! --- hycom version 1.0
! --- single row, part A.
!
integer i,k,ka,k0,k1,ktr
!
real tdp(idm),sdp(idm),dtemp(idm),dsaln(idm)
real dpth,ekminv,obuinv,ex,alf1,alf2,cp1,cp3,ape,cc4,spe, &
thknss,ustar3,buoyfl,dsgdt,tmn,smn,tup,sup, &
dtemp2,q,swfold,thet,alfadt,betads, &
swfrac,sflux1,tmin,tmax,smin,smax,trmin,trmax, &
thkold,thknew,thk1ta,t1,t2,s1,s2,tr1,tr2,dp1,dp2,dtrmax, &
chl
!
real ea1, ea2, em1, em2, em3, em4, em5
data ea1, ea2, em1, em2, em3, em4, em5 &
/0.60,0.30,0.45,2.60,1.90,2.30,0.60/ ! Gaspar coefficients
!
# include "stmt_fns.h"
!
! --- ---------------------
! --- set the vertical grid
! --- ---------------------
!
! --- store in -p- a set of interfaces that depict stratification the way a
! --- "pure" isopycnic model would. -dpmixl- is physical mixed layer depth.
! --- store variables averaged over -dpmixl- in layer 1.
!
do i=1,ii
if (SEA_P) then
!
klist(i,j)=-1
!
! --- start building up integral of t and s over mixed layer depth
tdp(i)=temp(i,j,1,n)*dp(i,j,1,n)
sdp(i)=saln(i,j,1,n)*dp(i,j,1,n)
util1(i,j)=dp(i,j,1,n)
util3(i,j)=th3d(i,j,1,n)
p(i,j,2)=dp(i,j,1,n)
pu(i,j,2)=dp(i,j,1,m)
!
do k=2,kk
p(i,j,k+1)=p(i,j,k)+dp(i,j,k,n)
pu(i,j,k+1)=pu(i,j,k)+dp(i,j,k,m)
!
! --- if mixed layer base is very close to interface, move it there
if (abs(p(i,j,k+1)-dpmixl(i,j,n)).lt. &
max(onecm,.001*dp(i,j,k,n)) ) then
dpmixl(i,j,n)=p(i,j,k+1)
endif
!
! --- watch for density decrease with depth (convective adjustment of
! --- the mixed layer) - convection occurs for both time steps to
! --- prevent mid-time and new mixed layer thicknesses from diverging
if (klist(i,j).le.-1 .and. &
p(i,j,k+1).gt.dpmixl(i,j,n) .and. &
p(i,j,k ).le.dpmixl(i,j,n) ) then
if (locsig) then
tup=tdp(i)/util1(i,j)
sup=sdp(i)/util1(i,j)
alfadt=0.5* &
(dsiglocdt(tup,sup,util1(i,j))+ &
dsiglocdt(temp(i,j,k,n),saln(i,j,k,n),util1(i,j)))* &
(tup-temp(i,j,k,n))
betads=0.5* &
(dsiglocds(tup,sup,util1(i,j))+ &
dsiglocds(temp(i,j,k,n),saln(i,j,k,n),util1(i,j)))* &
(sup-saln(i,j,k,n))
if(alfadt+betads.gt.0.0) then
dpmixl(i,j,n)=p (i,j,k+1)
klist(i,j)=-2
end if
else
th3d(i,j,1,n)=sig(tdp(i)/util1(i,j),sdp(i)/util1(i,j)) &
-thbase
if(th3d(i,j,1,n).gt.th3d(i,j,k,n)) then
dpmixl(i,j,n)=p (i,j,k+1)
klist(i,j)=-2
endif
end if
end if
!
if (p(i,j,k+1).le.dpmixl(i,j,n)) then
tdp(i)=tdp(i)+dp(i,j,k,n)*temp(i,j,k,n)
sdp(i)=sdp(i)+dp(i,j,k,n)*saln(i,j,k,n)
util1(i,j)=util1(i,j)+dp(i,j,k,n)
!
else if (p(i,j,k).lt.dpmixl(i,j,n)) then
klist(i,j)=k
end if
enddo !k
!
temp(i,j,1,n)=tdp(i)/util1(i,j)
saln(i,j,1,n)=sdp(i)/util1(i,j)
th3d(i,j,1,n)=sig(temp(i,j,1,n),saln(i,j,1,n))-thbase
! if (klist(i,j).eq.-2) then
! util3(i,j)=th3d(i,j,1,n)
! do k1=2,kk
! if (p(i,j,k1+1).le.dpmixl(i,j,n)) then
! th3d(i,j,k1,n)=th3d(i,j,1,n)
! endif
! enddo !k1
! end if
!
! --- unmix t, s, and tracer
!
! --- the first guesses for upper sublayer values are the old-time mixed
! --- layer values saved in hybgen plus all changes that have occurred
! --- since then
!
! --- prevent spurious maxima or minima from being generated in the lower
! --- sublayer, then adjust upper sublayer values if necessary to conserve
! --- vertical averages
!
if(klist(i,j).ge.2) then
k=klist(i,j)
k0=min(k+1,kk)
dp1=dpmixl(i,j,n)-p(i,j,k)
dp2=p(i,j,k+1)-dpmixl(i,j,n)
q=-dp1/dp2
if(k.eq.nmlb(i,j,n)) then
t1=t1sav(i,j,n)+temp(i,j,k,n)-tmlb(i,j,n)
s1=s1sav(i,j,n)+saln(i,j,k,n)-smlb(i,j,n)
else
t1=temp(i,j,k-1,n)
s1=saln(i,j,k-1,n)
nmlb(i,j,n)=k
end if
tmin=min(t1,temp(i,j,k,n),temp(i,j,k0,n))
tmax=max(t1,temp(i,j,k,n),temp(i,j,k0,n))
smin=min(s1,saln(i,j,k,n),saln(i,j,k0,n))
smax=max(s1,saln(i,j,k,n),saln(i,j,k0,n))
t2=temp(i,j,k,n)+q*(t1-temp(i,j,k,n))
s2=saln(i,j,k,n)+q*(s1-saln(i,j,k,n))
temp(i,j,k,n)=min(tmax,max(tmin,t2))
saln(i,j,k,n)=min(smax,max(smin,s2))
util4(i,j)=th3d(i,j,k,n)
th3d(i,j,k,n)=sig(temp(i,j,k,n),saln(i,j,k,n))-thbase
t1=t1+(t2-temp(i,j,k,n))*dp2/dp1
s1=s1+(s2-saln(i,j,k,n))*dp2/dp1
tdp(i)=tdp(i)+t1*dp1
sdp(i)=sdp(i)+s1*dp1
temp(i,j,1,n)=tdp(i)/dpmixl(i,j,n)
saln(i,j,1,n)=sdp(i)/dpmixl(i,j,n)
th3d(i,j,1,n)=sig(temp(i,j,1,n),saln(i,j,1,n))-thbase
do ktr= 1,ntracr
tr1=1.0 ! THIS MAY BE WRONG FOR MULTIPLE TRACERS
trmin=min(tr1,tracer(i,j,k,n,ktr),tracer(i,j,k0,n,ktr))
trmax=max(tr1,tracer(i,j,k,n,ktr),tracer(i,j,k0,n,ktr))
tr2=tracer(i,j,k,n,ktr)+q*(tr1-tracer(i,j,k,n,ktr))
tracer(i,j,k,n,ktr)=min(trmax,max(trmin,tr2))
enddo
end if
!
! --- set the new grid
!
do k=1,kk
p(i,j,k+1)=max(dpmixl(i,j,n),p(i,j,k+1))
enddo !k
!
endif !ip
enddo !i
!
! --- ----------------------------------------
! --- slab mixed layer entrainment/detrainment
! --- ----------------------------------------
!
do i=1,ii
if (SEA_P) then
!
! --- determine turb.kin.energy generation due to wind stirring
! --- ustar computed in subr. -thermf-
! --- buoyancy flux (m**2/sec**3), all fluxes into the ocean
! --- note: surface density increases (column is destabilized) if buoyfl < 0
thkold=dpmixl(i,j,n)
ustar3=ustar(i,j)**3
tmn=.5*(temp(i,j,1,m)+temp(i,j,1,n))
smn=.5*(saln(i,j,1,m)+saln(i,j,1,n))
dsgdt=dsigdt(tmn,smn)
buoyfl=-g*svref*(dsigds(tmn,smn)* &
(-wtrflx(i,j)*saln(i,j,1,n)+salflx(i,j))*svref+ &
dsgdt *surflx(i,j) *svref/spcifh)
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- option 1 : k r a u s - t u r n e r mixed-layer t.k.e. closure
!
!cc em=0.8*exp(-p(i,j,2)/(50.*onem)) ! hadley centre choice (orig.: 1.25)
!cc en=0.15 ! hadley centre choice (orig.: 0.4)
!cc thermg=-0.5*((en+1.)*buoyfl+(en-1.)*abs(buoyfl))
!cc turgen(i,j)=delt1*(2.*em*g*ustar3*rhoref+thkold*thermg)*rhoref**2
!
! --- find monin-obukhov length in case of receding mixed layer (turgen < 0).
! --- the monin-obukhov length is found by stipulating turgen = 0.
!
!cc if (turgen(i,j).lt.0.) then
!cc depnew(i,j)=-2.*em*g*ustar3/min(-epsil,svref*thermg)
!cc else
!cc depnew(i,j)=thkold
!cc end if
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- option 2 : g a s p a r mixed-layer t.k.e. closure
!
dpth=thkold*qonem
ekminv=1./hekman(i,j)
obuinv=buoyfl/max(epsil,ustar3)
ex=exp(min(50.,dpth*obuinv))
alf1=ea1+ea2*max(1.,2.5*dpth*ekminv)*ex
alf2=ea1+ea2*ex
cp1=((1.-em5)*(alf1/alf2)+.5*em4)*athird
cp3=max(0.,(em4*(em2+em3)-(alf1/alf2)*(em2+em3-em3*em5))*athird)
ape=cp3*ustar3-cp1*dpth*buoyfl
!
if(ape.lt.0.) then ! detrainment
turgen(i,j)=(g*delt1*rhoref**3)*ape
depnew(i,j)=min(thkold,g*cp3/(svref*cp1*max(epsil,obuinv)))
!
else ! entrainment
cc4=2.*em4/(em1*em1) * alf1*alf1
spe=(em2+em3)*ustar3-0.5*dpth*buoyfl
turgen(i,j)=(g*delt1*rhoref**3)*(sqrt((.5*ape-cp1*spe)**2 &
+2.*cc4*ape*spe)-(.5*ape+cp1*spe))/(cc4-cp1)
depnew(i,j)=thkold
end if
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- util1,util2 are used to evaluate pot.energy changes during entrainment
util1(i,j)=util3(i,j)*dp(i,j,1,n)
util2(i,j)=util3(i,j)*dp(i,j,1,n)**2
pu(i,j,2)=dp(i,j,1,n)
!
! --- find thknew in case of mx.layer deepening (turgen>0). store in -depnew-.
! --- entrain as many layers as needed to deplete -turgen-.
!
do k=2,kk
ka=k-1
pu(i,j,k+1)=pu(i,j,k)+dp(i,j,k,n)
if (k.eq.2) then
thstar(i,j,ka,1)=util3(i,j)
endif
if (locsig) then
alfadt=0.5* &
(dsiglocdt(temp(i,j,ka,n),saln(i,j,ka,n),pu(i,j,k))+ &
dsiglocdt(temp(i,j,k ,n),saln(i,j,k ,n),pu(i,j,k)))* &
(temp(i,j,ka,n)-temp(i,j,k,n))
betads=0.5* &
(dsiglocds(temp(i,j,ka,n),saln(i,j,ka,n),pu(i,j,k))+ &
dsiglocds(temp(i,j,k ,n),saln(i,j,k ,n),pu(i,j,k)))* &
(saln(i,j,ka,n)-saln(i,j,k,n))
thstar(i,j,k,1)=thstar(i,j,ka,1)-alfadt-betads
thet=thstar(i,j,k,1)
else
if (k.ne.klist(i,j)) then
thet=th3d(i,j,k,n)
else
thet=util4(i,j)
endif
endif
thknew=max(dpmixl(i,j,n),min(pu(i,j,k+1), &
(2.0*turgen(i,j)+thet*pu(i,j,k)**2-util2(i,j))/ &
max(epsil,thet*pu(i,j,k) -util1(i,j))))
! --- stop iterating for 'thknew' as soon as thknew < k-th interface pressure
if (thknew.lt.pu(i,j,k)) thknew=depnew(i,j)
! --- substitute 'thknew' for monin-obukhov length if mixed layer is deepening
if (turgen(i,j).ge.0.) then
depnew(i,j)=thknew
endif
!
util1(i,j)=util1(i,j)+thet*(pu(i,j,k+1) -pu(i,j,k) )
util2(i,j)=util2(i,j)+thet*(pu(i,j,k+1)**2-pu(i,j,k)**2)
enddo !k
endif !ip
enddo !i
!
dtrmax = (onem*dtrate/86400.0) * delt1
do i=1,ii
if (SEA_P) then
!
!diag if (i.eq.itest.and.j.eq.jtest) then
!diag if (turgen(i,j).lt.0.) then
!diag write (lp,'(i9,2i5,a,1p,2e13.5)') nstep,i+i0,j+j0, &
!diag ' m-o length (m), turgen:',depnew(i,j)*qonem,turgen(i,j)
!diag else
!diag write (lp,'(i9,2i5,a,1p,2e13.5)') nstep,i+i0,j+j0, &
!diag ' new depth (m), turgen:',depnew(i,j)*qonem,turgen(i,j)
!diag endif
!diag endif
!
! --- don't allow mixed layer to get too deep or too shallow. mixed layer
! --- detrainment rate limited to dtrate m/day
depnew(i,j)=min(p(i,j,kk+1)-onem, &
max(thkmin*onem,pu(i,j,3),dp(i,j,1,n)+onemm, &
depnew(i,j),dpmixl(i,j,n)-dtrmax))
!
do k=2,kk
thknew=depnew(i,j)
! --- integrate t/s over depth range slated for entrainment into mixed layer
tdp(i)=tdp(i)+temp(i,j,k,n)*(min(thknew,p(i,j,k+1)) &
-min(thknew,p(i,j,k )))
sdp(i)=sdp(i)+saln(i,j,k,n)*(min(thknew,p(i,j,k+1)) &
-min(thknew,p(i,j,k )))
enddo !k
!
thkold=p(i,j,2)
thknew=depnew(i,j)
thk1ta=thknew*oneta(i,j,n)
thknss=max(thknew,thkold)
!
!diag if (i.eq.itest.and.j.eq.jtest) write (lp,'(i9,2i5,a,2f10.4)') &
!diag nstep,i+i0,j+j0, &
!diag ' old/new mixed layer depth:',thkold*qonem,thknew*qonem
!
! --- distribute thermohaline forcing over new mixed layer depth
! --- flux positive into ocean
if(pensol) then
! --- penetrating solar radiation
if (jerlv0.le.0) then !KPAR or CHL
chl = akpar(i,j,lk0)*wk0+akpar(i,j,lk1)*wk1 &
+akpar(i,j,lk2)*wk2+akpar(i,j,lk3)*wk3
endif
call swfrml_ij(chl,thknew,p(i,j,kk+1),qonem*oneta(i,j,n), &
jerlov(i,j),swfrac)
sflux1=surflx(i,j)-sswflx(i,j)
dtemp(i)=(sflux1+(1.-swfrac)*sswflx(i,j))* &
delt1*g/(spcifh*thk1ta)
if (epmass.eq.1) then !only actual salt flux
dsaln(i)= salflx(i,j)* &
delt1*g/thk1ta
elseif (epmass.eq.2) then !river only is mass flux
dsaln(i)=(salflx(i,j)- &
(wtrflx(i,j)-rivflx(i,j))*saln(i,j,1,n))* &
delt1*g/thk1ta
else !water flux treated as a virtual salt flux
dsaln(i)=(salflx(i,j)-wtrflx(i,j)*saln(i,j,1,n))* &
delt1*g/thk1ta
endif
!diag if (i.eq.itest.and.j.eq.jtest) then
!diag write(lp,104) nstep,i+i0,j+j0,k,0.,1.-swfrac,dtemp(i),dsaln(i)
!diag endif
104 format(i9,2i5,i3,'absorbup,dn,dtemp,dsaln ',2f6.3,2f10.6)
!
else
!
dtemp(i)=surflx(i,j)* &
delt1*g/(spcifh*thk1ta)
if (epmass.eq.1) then !only actual salt flux
dsaln(i)= salflx(i,j)* &
delt1*g/thk1ta
elseif (epmass.eq.2) then !river only is mass flux
dsaln(i)=(salflx(i,j)- &
(wtrflx(i,j)-rivflx(i,j))*saln(i,j,1,n))* &
delt1*g/thk1ta
else !water flux treated as a virtual salt flux
dsaln(i)=(salflx(i,j)-wtrflx(i,j)*saln(i,j,1,n))* &
delt1*g/thk1ta
endif
!
end if !pensol:else
!
! --- calculate average temp, saln over max(old,new) mixed layer depth
temp(i,j,1,n)=tdp(i)/thknss
saln(i,j,1,n)=sdp(i)/thknss
p(i,j,2)=dp(i,j,1,n)
endif !ip
enddo !i
!
! --- homogenize water mass properties down to max(old,new) mixed layer depth
! --- Asselin time smoothing of mixed layer depth
!
do i=1,ii
if (SEA_P) then
thknss=max(depnew(i,j),dpmixl(i,j,n))
dpmixl(i,j,n)=depnew(i,j)
depnew(i,j)=thknss
dpmixl(i,j,m)=(1.0- ra2fac)* dpmixl(i,j,m)+ &
0.5*ra2fac *(dpmold(i,j) + &
dpmixl(i,j,n) )
!
do k=2,kk
p(i,j,k+1)=p(i,j,k)+dp(i,j,k,n)
q=max(0.,min(1.,(depnew(i,j)-p(i,j,k))/(dp(i,j,k,n)+epsil)))
temp(i,j,k,n)=temp(i,j,k,n)+q*(temp(i,j,1,n)-temp(i,j,k,n))
saln(i,j,k,n)=saln(i,j,k,n)+q*(saln(i,j,1,n)-saln(i,j,k,n))
do ktr= 1,ntracr
tracer(i,j,k,n,ktr)=tracer(i,j,k,n,ktr) &
+q*(tracer(i,j,1,n,ktr)-tracer(i,j,k,n,ktr))
enddo
enddo !k
endif !ip
enddo !i
!
! --- add in surface thermohaline forcing over the new mixed layer depth
! --- add penetrating solar radiation
do i=1,ii
if (SEA_P) then
do k=1,kk
thknss=dpmixl(i,j,n)
q=max(0.,min(1.,(thknss-p(i,j,k))/(dp(i,j,k,n)+epsil)))
if(q.eq.1.) then
temp(i,j,k,n)= temp(i,j,k,n)+dtemp(i)
saln(i,j,k,n)=max(saln(i,j,k,n)+dsaln(i),0.0) !must be non-negative
th3d(i,j,k,n)=sig(temp(i,j,k,n),saln(i,j,k,n))-thbase
else
temp(i,j,k,n)= temp(i,j,k,n)+q*dtemp(i)
saln(i,j,k,n)=max(saln(i,j,k,n)+q*dsaln(i),0.0)
if(pensol) then
!
! --- heat layers beneath mixed layer due to
! --- penetrating solar radiation (all redfac in mixed layer)
if (jerlv0.le.0) then
chl = akpar(i,j,lk0)*wk0+akpar(i,j,lk1)*wk1 &
+akpar(i,j,lk2)*wk2+akpar(i,j,lk3)*wk3
endif
call swfrml_ij(chl,max(thknss,p(i,j,k )), &
p(i,j,kk+1),qonem*oneta(i,j,n), &
jerlov(i,j),swfold)
call swfrml_ij(chl, p(i,j,k+1), &
p(i,j,kk+1),qonem*oneta(i,j,n), &
jerlov(i,j),swfrac)
dtemp2=(swfold-swfrac)*sswflx(i,j)*delt1*g/ &
(spcifh*max(onemm,p(i,j,k+1)-max(thknss,p(i,j,k))))
temp(i,j,k,n)=temp(i,j,k,n)+(1.-q)*dtemp2
!diag if (i.eq.itest.and.j.eq.jtest) write (lp,104) nstep,i,j,1, &
!diag 1.-swfold,1.-swfrac,(1.-q)*dtemp2
end if !pensol
th3d(i,j,k,n)=sig(temp(i,j,k,n),saln(i,j,k,n))-thbase
end if
enddo !k
endif !ip
enddo !i
return
end
subroutine mxkrtabj(m,n, j, depnew)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n,j
real, dimension (1-nbdy:idm+nbdy,1-nbdy:jdm+nbdy) :: &
depnew
!
! --- hycom version 1.0
! --- single row, part B.
!
integer i,k,k1
!
real dp1,dp2,q,uv1,uv2,uvmin,uvmax
!
! --- ---------------
! --- momentum mixing
! --- ---------------
!
! --- homogenize -u- down to max(old,new) mixed layer depth
!
do i=1,ii
if (SEA_U) then
util1(i,j)=min(depthu(i,j)-onem,max(dpu(i,j,1,n),thkmin*onem, &
.5*(depnew(i,j)+depnew(i-1,j))))
!
! --- if mixed layer base is very close to interface, move it there
if (abs(util1(i,j)-dpu(i,j,1,n)).lt..001*dpu(i,j,1,n)) then
util1(i,j)=dpu(i,j,1,n)+onecm
endif
!
uflux(i,j)=u(i,j,1,n)*dpu(i,j,1,n)
util2(i,j)=dpu(i,j,1,n)
pu(i,j,2)=dpu(i,j,1,n)
!
do k=2,kk
pu(i,j,k+1)=pu(i,j,k)+dpu(i,j,k,n)
!
! --- if mixed layer base is very close to interface, move it there
if (abs(pu(i,j,k+1)-util1(i,j)).lt. &
max(onecm,.001*dpu(i,j,k,n)) ) then
util1(i,j)=pu(i,j,k+1)
endif
!
if (pu(i,j,k+1).le.util1(i,j)) then
uflux(i,j)=uflux(i,j)+u(i,j,k,n)*dpu(i,j,k,n)
util2(i,j)=util2(i,j)+ dpu(i,j,k,n)
end if
enddo !k
!
u(i,j,1,n)=uflux(i,j)/util2(i,j)
!
! --- unmix u
! --- first guess for upper sublayer value is the value from the layer
! --- immediately above the one containing the mixed layer base
do k=2,kk
k1=min(k+1,kk)
if (pu(i,j,k ).lt.util1(i,j) .and. &
pu(i,j,k+1).gt.util1(i,j) ) then
if(k.ge.3) then
dp1=util1(i,j)-pu(i,j,k)
dp2=pu(i,j,k+1)-util1(i,j)
uv1=u(i,j,k-1,n)
uvmin=min(uv1,u(i,j,k,n),u(i,j,k1,n))
uvmax=max(uv1,u(i,j,k,n),u(i,j,k1,n))
uv2=u(i,j,k,n)-(uv1-u(i,j,k,n))*dp1/dp2
u(i,j,k,n)=min(uvmax,max(uvmin,uv2))
uv1=uv1+(uv2-u(i,j,k,n))*dp2/dp1
u(i,j,1,n)=(uflux(i,j)+uv1*dp1)/util1(i,j)
end if
end if
enddo !k
!
do k=2,kk
!diag uold=u(i,j,k,n)
q=max(0.,min(1.,(util1(i,j)-pu(i,j,k))/(dpu(i,j,k,n)+epsil)))
u(i,j,k,n)=u(i,j,k,n)+q*(u(i,j,1,n)-u(i,j,k,n))
!diag if (i.eq.itest .and. j.eq.jtest) write &
!diag (lp,'(i9,2i5,i3,a,f9.3,2f8.3)') nstep,i+i0,j+j0,k, &
!diag ' dpu, old/new u ',dpu(i,j,k,n)*qonem,uold,u(i,j,k,n)
enddo !k
endif !iu
enddo !i
!
! --- homogenize -v- down to max(old,new) mixed layer depth
!
do i=1,ii
if (SEA_V) then
util1(i,j)=min(depthv(i,j)-onem,max(dpv(i,j,1,n),thkmin*onem, &
.5*(depnew(i,j)+depnew(i,j-1))))
!
! --- if mixed layer base is very close to interface, move it there
if (abs(util1(i,j)-dpv(i,j,1,n)).lt..001*dpv(i,j,1,n)) then
util1(i,j)=dpv(i,j,1,n)+onecm
endif
!
vflux(i,j)=v(i,j,1,n)*dpv(i,j,1,n)
util2(i,j)=dpv(i,j,1,n)
pv(i,j,2)=dpv(i,j,1,n)
!
do k=2,kk
pv(i,j,k+1)=pv(i,j,k)+dpv(i,j,k,n)
!
! --- if mixed layer base is very close to interface, move it there
if (abs(pv(i,j,k+1)-util1(i,j)).lt. &
max(onecm,.001*dpv(i,j,k,n)) ) then
util1(i,j)=pv(i,j,k+1)
endif
!
if (pv(i,j,k+1).le.util1(i,j)) then
vflux(i,j)=vflux(i,j)+v(i,j,k,n)*dpv(i,j,k,n)
util2(i,j)=util2(i,j)+ dpv(i,j,k,n)
end if
enddo !k
!
v(i,j,1,n)=vflux(i,j)/util2(i,j)
!
! --- unmix v
! --- first guess for upper sublayer value is the value from the layer
! --- immediately above the one containing the mixed layer base
do k=2,kk
k1=min(k+1,kk)
if (pv(i,j,k ).lt.util1(i,j) .and. &
pv(i,j,k+1).gt.util1(i,j) ) then
if(k.ge.3) then
dp1=util1(i,j)-pv(i,j,k)
dp2=pv(i,j,k+1)-util1(i,j)
uv1=v(i,j,k-1,n)
uvmin=min(uv1,v(i,j,k,n),v(i,j,k1,n))
uvmax=max(uv1,v(i,j,k,n),v(i,j,k1,n))
uv2=v(i,j,k,n)-(uv1-v(i,j,k,n))*dp1/dp2
v(i,j,k,n)=min(uvmax,max(uvmin,uv2))
uv1=uv1+(uv2-v(i,j,k,n))*dp2/dp1
v(i,j,1,n)=(vflux(i,j)+uv1*dp1)/util1(i,j)
end if
end if
enddo !k
!
do k=2,kk
!diag vold=v(i,j,k,n)
q=max(0.,min(1.,(util1(i,j)-pv(i,j,k))/(dpv(i,j,k,n)+epsil)))
v(i,j,k,n)=v(i,j,k,n)+q*(v(i,j,1,n)-v(i,j,k,n))
!diag if (i.eq.itest .and. j.eq.jtest) write &
!diag (lp,'(i9,2i5,i3,a,f9.3,2f8.3)') nstep,i+i0,j+j0,k, &
!diag ' dpv, old/new v ',dpv(i,j,k,n)*qonem,vold,v(i,j,k,n)
enddo !k
endif !iv
enddo !i
!
return
end
!
subroutine mxkrtb(m,n)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n
!
! --- hycom version 1.0 -- alternative slab mixed layer model
!
integer j
!
!$OMP PARALLEL DO PRIVATE(j) &
!$OMP SHARED(m,n) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
call mxkrtbaj(m,n, j)
enddo
!$OMP END PARALLEL DO
!
!$OMP PARALLEL DO PRIVATE(j) &
!$OMP SHARED(m,n) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
call mxkrtbbj(m,n, j)
enddo
!$OMP END PARALLEL DO
!
return
end
!
subroutine mxkrtbaj(m,n, j)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n,j
!
! --- hycom version 1.0 -- alternative slab mixed layer model
! --- single row, part A.
!
real dpth,ekminv,obuinv,ex,alf1,alf2,cp1,cp3,ape,cc4,spe, &
ustar3,thkold,thknew,value,q,tdp,sdp,trdp(mxtrcr), &
tem,sal,rho,thet,alfadt,betads, &
ttem(kdm),ssal(kdm),ttrc(kdm,mxtrcr),dens(kdm),densl(kdm), &
pres(kdm+1),delp(kdm),sum1,sum2,buoyfl,dsgdt,tmn,smn
!diag real totem,tosal,tndcyt,tndcys
integer kmxbot
integer i,k,ka,ktr
!
! --- abs.bound (m/day) and rel.bound (percent/day) on detrainment rate:
!cc real bound1, bound2
!cc data bound1, bound2 /200.0, 0.10/
!
real ea1, ea2, em1, em2, em3, em4, em5
data ea1, ea2, em1, em2, em3, em4, em5 &
/0.60,0.30,0.45,2.60,1.90,2.30,0.60/ ! Gaspar coefficients
!
# include "stmt_fns.h"
!
do i=1,ii
if (SEA_P) then
!
! --- extract single column from 3-d fields
pres(1)=p(i,j,1)
do k=1,kk
ttem(k)=temp(i,j,k,n)
ssal(k)=saln(i,j,k,n)
dens(k)=th3d(i,j,k,n)
do ktr= 1,ntracr
ttrc(k,ktr)=tracer(i,j,k,n,ktr)
enddo
delp(k)=dp(i,j,k,n)
pres(k+1)=pres(k)+delp(k)
enddo !k
!
103 format (i9,2i5,a/(33x,i3,2f8.3,f8.3,f8.2,f8.1))
!diag if (i.eq.itest .and. j.eq.jtest) &
!diag write (lp,103) nstep,itest+i0,jtest+j0, &
!diag ' entering mxlayr: temp saln dens thkns dpth',(k, &
!diag ttem(k),ssal(k),dens(k)+thbase,delp(k)*qonem,pres(k+1)*qonem,k=1,kk)
!
! --- store 'old' t/s column integral in totem/tosal (diagnostic use only)
!diag totem=0.
!diag tosal=0.
!diag do k=1,kk
!diag totem=totem+ttem(k)*delp(k)
!diag tosal=tosal+ssal(k)*delp(k)
!diag enddo !k
!
tdp=ttem(1)*delp(1)
sdp=ssal(1)*delp(1)
do ktr= 1,ntracr
trdp(ktr)=delp(1)
enddo !ktr
!
kmxbot=1
do k=2,kk
!
! --- watch for density decrease with depth (convective adjustment)
tem=(tdp+ttem(k)*delp(k))/pres(k+1)
sal=(sdp+ssal(k)*delp(k))/pres(k+1)
rho=sig(tem,sal)-thbase
if (locsig) then
alfadt=0.5*(dsiglocdt(tem,sal,pres(k+1))+ &
dsiglocdt(ttem(k),ssal(k),pres(k+1)))*(tem-ttem(k))
betads=0.5*(dsiglocds(tem,sal,pres(k+1))+ &
dsiglocds(ttem(k),ssal(k),pres(k+1)))*(sal-ssal(k))
if(alfadt+betads.gt.0.0) then
ttem(1)=tem
ssal(1)=sal
dens(1)=rho
tdp=tdp+ttem(k)*delp(k)
sdp=sdp+ssal(k)*delp(k)
do ktr= 1,ntracr
trdp(ktr)=trdp(ktr)+ttrc(k,ktr)*delp(k)
enddo
kmxbot=k
end if
else
if (rho.le.dens(1)) then
ttem(1)=tem
ssal(1)=sal
dens(1)=rho
tdp=tdp+ttem(k)*delp(k)
sdp=sdp+ssal(k)*delp(k)
do ktr= 1,ntracr
trdp(ktr)=trdp(ktr)+ttrc(k,ktr)*delp(k)
enddo
kmxbot=k
end if
endif
if (k.gt.kmxbot) then
exit
endif
enddo !k
!
do k=2,kmxbot
ttem(k)=ttem(1)
ssal(k)=ssal(1)
dens(k)=dens(1)
do ktr= 1,ntracr
ttrc(k,ktr)=ttrc(1,ktr)
enddo !ktr
enddo !k
!
! --- ----------------------------------------
! --- slab mixed layer entrainment/detrainment
! --- ----------------------------------------
!
! --- determine turb.kin.energy generation due to wind stirring
! --- ustar computed in subr. -thermf-
! --- buoyancy flux (m**2/sec**3), all fluxes into the ocean
! --- note: surface density increases (column is destabilized) if buoyfl < 0
thkold=pres(kmxbot+1)
ustar3=ustar(i,j)**3
tmn=.5*(temp(i,j,1,m)+temp(i,j,1,n))
smn=.5*(saln(i,j,1,m)+saln(i,j,1,n))
dsgdt=dsigdt(tmn,smn)
buoyfl=-g*svref*(dsigds(tmn,smn)* &
(-wtrflx(i,j)*saln(i,j,1,n)+salflx(i,j))*svref+ &
dsgdt *surflx(i,j) *svref/spcifh)
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- option 1 : k r a u s - t u r n e r mixed-layer t.k.e. closure
!
!cc em=0.8*exp(-pres(2)/(50.*onem)) ! hadley centre choice (orig.: 1.25)
!cc en=0.15 ! hadley centre choice (orig.: 0.4)
!cc thermg=0.5*((en+1.)*buoyfl+(en-1.)*abs(buoyfl))
!cc turgen(i,j)=delt1*(2.*em*g*ustar3*rhoref+thkold*thermg)*rhoref**2
!
! --- find monin-obukhov length in case of receding mixed layer (turgen < 0).
! --- the monin-obukhov length is found by stipulating turgen = 0.
!
!cc if (turgen(i,j).lt.0.) then
!cc thknew=-2.*em*g*ustar3/min(-epsil,svref*thermg)
!cc else
!cc thknew=thkold
!cc end if
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- option 2 : g a s p a r mixed-layer t.k.e. closure
!
dpth=thkold*qonem
ekminv=abs(corio(i,j))/max(epsil,ustar(i,j))
obuinv=buoyfl/max(epsil,ustar3)
ex=exp(min(50.,dpth*obuinv))
alf1=ea1+ea2*max(1.,2.5*dpth*ekminv)*ex
alf2=ea1+ea2*ex
cp1=((1.-em5)*(alf1/alf2)+.5*em4)*athird
cp3=max(0.,(em4*(em2+em3)-(alf1/alf2)*(em2+em3-em3*em5))*athird)
ape=cp3*ustar3+cp1*dpth*buoyfl
!
if(ape.lt.0.) then ! detrainment
turgen(i,j)=(g*delt1*rhoref**3)*ape
thknew=min(thkold,g*cp3/(svref*cp1*max(epsil,obuinv)))
!
else ! entrainment
cc4=2.*em4/(em1*em1) * alf1*alf1
spe=(em2+em3)*ustar3+0.5*dpth*buoyfl
turgen(i,j)=(g*delt1*rhoref**3)*(sqrt((.5*ape-cp1*spe)**2 &
+2.*cc4*ape*spe)-(.5*ape+cp1*spe))/(cc4-cp1)
thknew=thkold
end if
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- sum1,sum2 are used to evaluate pot.energy changes during entrainment
sum1=dens(1)*thkold
sum2=dens(1)*thkold**2
!
! --- find thknew in case of mx.layer deepening (turgen>0). store in -thknew-.
! --- entrain as many layers as needed to deplete -turgen-.
!
do k=2,kk
ka=k-1
if (locsig) then
if (k.eq.2) then
densl(ka)=dens(ka)
endif
alfadt=0.5* &
(dsiglocdt(ttem(ka),ssal(ka),pres(k))+ &
dsiglocdt(ttem(k ),ssal(k ),pres(k)))*(ttem(ka)-ttem(k))
betads=0.5* &
(dsiglocds(ttem(ka),ssal(ka),pres(k))+ &
dsiglocds(ttem(k ),ssal(k ),pres(k)))*(ssal(ka)-ssal(k))
densl(k)=densl(ka)-alfadt-betads
thet=densl(k)
else
thet=dens (k)
endif
if (pres(k+1).gt.thkold) then
value=(2.*turgen(i,j)+thet*pres(k)**2-sum2)/ &
max(epsil,thet*pres(k) -sum1)
! --- stop iterating for 'thknew' as soon as thknew < k-th interface pressure
if (value.lt.pres(k)) then
value=thknew
endif
! --- substitute 'thknew' for monin-obukhov length if mixed layer is deepening
if (turgen(i,j).ge.0.) then
thknew=value
endif
!
sum1=sum1+thet*(pres(k+1) -max(pres(k),thkold) )
sum2=sum2+thet*(pres(k+1)**2-max(pres(k),thkold)**2)
end if
enddo !k
!
!diag if (i.eq.itest .and. j.eq.jtest .and. turgen(i,j).lt.0.) &
!diag write (lp,'(i9,2i5,a,f8.2,1p,e13.3)') nstep,itest+i0,jtest+j0, &
!diag ' monin-obukhov length (m),turgen:',thknew*qonem,turgen(i,j)
!
! --- don't allow mixed layer to get too deep or too shallow.
!cc q=max(bound1*onem,thkold*bound2)*delt1/86400.
!cc thknew=min(pres(kk+1),max(thkmin*onem,delp(1),thknew,thkold-q))
thknew=min(pres(kk+1),max(thkmin*onem,delp(1),thknew))
!
! --- integrate t/s over new mixed layer depth
!
tdp=ttem(1)*delp(1)
sdp=ssal(1)*delp(1)
!
do k=2,kk
if (pres(k).lt.thknew) then
q=min(thknew,pres(k+1))-min(thknew,pres(k))
tdp=tdp+ttem(k)*q
sdp=sdp+ssal(k)*q
end if
enddo !k
!
!diag if (i.eq.itest.and.j.eq.jtest) write (lp,'(i9,2i5,a,2f9.3)') &
!diag nstep,i+i0,j+j0, &
!diag ' old/new mixed layer depth:',thkold*qonem,thknew*qonem
!
! --- distribute thermohaline forcing over new mixed layer depth
!
ttem(1)=(tdp+surflx(i,j)*delt1*g/spcifh)/thknew
ssal(1)=(sdp+salflx(i,j)*delt1*g )/thknew
dens(1)=sig(ttem(1),ssal(1))-thbase
!
! --- homogenize water mass properties down to new mixed layer depth
!