-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmxkrtm.F90
673 lines (670 loc) · 21.7 KB
/
mxkrtm.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
#if defined(ROW_LAND)
#define SEA_P .true.
#define SEA_U .true.
#define SEA_V .true.
#elif defined(ROW_ALLSEA)
#define SEA_P allip(j).or.ip(i,j).ne.0
#define SEA_U alliu(j).or.iu(i,j).ne.0
#define SEA_V alliv(j).or.iv(i,j).ne.0
#else
#define SEA_P ip(i,j).ne.0
#define SEA_U iu(i,j).ne.0
#define SEA_V iv(i,j).ne.0
#endif
subroutine mxkrtm(m,n)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n
!
! --- hycom version 1.0 (adapted from micom version 2.8)
!
#if defined(RELO)
real, save, allocatable, dimension(:,:) ::&
#else
real, save, dimension(1-nbdy:idm+nbdy,1-nbdy:jdm+nbdy) ::&
#endif
sdot
!
integer i,j,k
real delp,q,thk
!cc integer kmax
!cc real totem,tosal,tndcyt,tndcys,work(3)
#if defined(RELO)
!
if (.not.allocated(sdot)) then
allocate( &
sdot(1-nbdy:idm+nbdy,1-nbdy:jdm+nbdy) )
call mem_stat_add( (idm+2*nbdy)*(jdm+2*nbdy) )
sdot = r_init
endif
#endif
!
!$OMP PARALLEL DO PRIVATE(j,k,i) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do k=1,kk
do i=1,ii
if (SEA_P) then
p(i,j,k+1)=p(i,j,k)+dp(i,j,k,n)
endif !ip
enddo !i
enddo !k
enddo !j
!$OMP END PARALLEL DO
!
103 format (i9,2i5,a/(33x,i3,2f8.3,f8.3,0p,f8.2,f8.1))
!diag if (itest.gt.0 .and. jtest.gt.0) write (lp,103) nstep,itest,jtest, &
!diag ' entering mxlayr: temp saln dens thkns dpth', &
!diag (k,temp(itest,jtest,k,n),saln(itest,jtest,k,n), &
!diag th3d(itest,jtest,k,n)+thbase,dp(itest,jtest,k,n)*qonem, &
!diag p(itest,jtest,k+1)*qonem,k=1,kk)
!
if (thermo .or. sstflg.gt.0 .or. srelax) then
!
! --- -----------------------------------
! --- mixed layer entrainment/detrainment
! --- -----------------------------------
!
!$OMP PARALLEL DO PRIVATE(j) &
!$OMP SHARED(m,n,sdot) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
call mxkrtmaj(m,n, sdot, j)
enddo
!$OMP END PARALLEL DO
!
else !.not.thermo ...
!
!$OMP PARALLEL DO PRIVATE(j,i) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
surflx(i,j)=0.
salflx(i,j)=0.
wtrflx(i,j)=0.
sdot(i,j)=dp(i,j,1,n)
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
!
end if !thermo.or.sstflg.gt.0.or.srelax:else
!
!diag if (itest.gt.0.and.jtest.gt.0.and.turgen(itest,jtest).lt.0.) &
!diag write (lp,'(i9,2i5,a,f8.2)') nstep,itest,jtest, &
!diag ' monin-obukhov length (m):',sdot(itest,jtest)*qonem
!
! --- store 'old' t/s column integral in totem/tosal (diagnostic use only)
!cc totem=0.
!cc tosal=0.
!cc do k=1,kk
!cc if (max(dp(itest,jtest,1,n)+sdot(itest,jtest),thkmin*onem).gt.
!cc . p(itest,jtest,k) .or. max(th3d(itest,jtest,1,m),th3d(itest,
!cc . jtest,1,n)) +sigjmp.ge.th3d(i,j,k,n)) then
!cc kmax=k
!cc totem=totem+temp(itest,jtest,k,n)*dp(itest,jtest,k,n)
!cc tosal=tosal+saln(itest,jtest,k,n)*dp(itest,jtest,k,n)
!cc end if
!cc end do
!
!$OMP PARALLEL DO PRIVATE(j) &
!$OMP SHARED(m,n,sdot) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
call mxkrtmbj(m,n, sdot, j)
enddo
!$OMP END PARALLEL DO
!
! --- compare 'old' with 'new' t/s column integral (diagnostic use only)
!
!cc tndcyt=-totem
!cc tndcys=-tosal
!cc do k=kmax,1,-1
!cc tndcyt=tndcyt+temp(itest,jtest,k,n)*dp(itest,jtest,k,n)
!cc tndcys=tndcys+saln(itest,jtest,k,n)*dp(itest,jtest,k,n)
!cc end do
!cc write (lp,'(i9,2i5,i3,3x,a,1p,3e10.2/25x,a,3e10.2)') nstep,itest,
!cc . jtest,kmax,'total saln,srf.flux,tndcy:',tosal/g,salflx(itest,
!cc . jtest)*delt1,tndcys/g,'total temp,srf.flux,tndcy:',totem/g,
!cc . surflx(itest,jtest)*delt1,tndcyt*spcifh/g
!
! --- store 'old' interface pressures in -pu,pv-
!
!$OMP PARALLEL DO PRIVATE(j,k,i) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do k=2,kk+1
do i=1,ii
if (SEA_U) then
pu(i,j,k)=min(depthu(i,j),.5*(p(i,j,k)+p(i-1,j,k)))
endif !iu
enddo !i
!
do i=1,ii
if (SEA_V) then
pv(i,j,k)=min(depthv(i,j),.5*(p(i,j,k)+p(i,j-1,k)))
endif !iv
enddo !i
enddo !k
enddo !j
!$OMP END PARALLEL DO
!
! --- store 'new' layer thicknesses in -dpu,dpv-
!
!$OMP PARALLEL DO PRIVATE(j,k,i) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do k=1,kk
do i=1,ii
if (SEA_P) then
p(i,j,k+1)=p(i,j,k)+dp(i,j,k,n)
endif !ip
enddo !i
enddo !k
enddo !j
!$OMP END PARALLEL DO
!
call dpudpv(dpu(1-nbdy,1-nbdy,1,n), &
dpv(1-nbdy,1-nbdy,1,n), &
p,depthu,depthv, 0,0)
!
! --- redistribute momentum in the vertical.
! --- homogenize (u,v) over depth range defined in -util1,util2-
!
! --- thk>0 activates momentum diffusion across mixed-layer interface
thk=vertmx*onem*delt1
!
!$OMP PARALLEL DO PRIVATE(j,i,k,delp,q) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
!
do i=1,ii
if (SEA_U) then
util1(i,j)=max(dpu(i,j,1,n),pu(i,j,2)+thk)
uflux(i,j)=0.
util3(i,j)=0.
!
do k=1,kk
delp=max(0.,min(util1(i,j),pu(i,j,k+1)) &
-min(util1(i,j),pu(i,j,k )))
uflux(i,j)=uflux(i,j)+u(i,j,k,n)*delp
util3(i,j)=util3(i,j) +delp
enddo !k
!
u(i,j,1,n)=uflux(i,j)/util3(i,j)
endif !iu
enddo !i
!
do i=1,ii
if (SEA_V) then
util2(i,j)=max(dpv(i,j,1,n),pv(i,j,2)+thk)
vflux(i,j)=0.
util4(i,j)=0.
!
do k=1,kk
delp=max(0.,min(util2(i,j),pv(i,j,k+1)) &
-min(util2(i,j),pv(i,j,k )))
vflux(i,j)=vflux(i,j)+v(i,j,k,n)*delp
util4(i,j)=util4(i,j) +delp
enddo !k
!
v(i,j,1,n)=vflux(i,j)/util4(i,j)
endif !iv
enddo !i
!
do k=2,kk
!
do i=1,ii
if (SEA_U) then
pu(i,j,k)=pu(i,j,k-1)+dpu(i,j,k-1,n)
q=max(0.,min(1.,(util1(i,j)-pu(i,j,k))/(dpu(i,j,k,n)+epsil)))
u(i,j,k,n)=u(i,j,1,n)*q+u(i,j,k,n)*(1.-q)
endif !iu
enddo !i
!
do i=1,ii
if (SEA_V) then
pv(i,j,k)=pv(i,j,k-1)+dpv(i,j,k-1,n)
q=max(0.,min(1.,(util2(i,j)-pv(i,j,k))/(dpv(i,j,k,n)+epsil)))
v(i,j,k,n)=v(i,j,1,n)*q+v(i,j,k,n)*(1.-q)
endif !iv
enddo !i
enddo !k
enddo !j
!$OMP END PARALLEL DO
!
!diag if (itest.gt.0 .and. jtest.gt.0) write (lp,103) nstep,itest,jtest, &
!diag ' exiting mxlayr: temp saln dens thkns dpth', &
!diag (k,temp(itest,jtest,k,n),saln(itest,jtest,k,n), &
!diag th3d(itest,jtest,k,n)+thbase,dp(itest,jtest,k,n)*qonem, &
!diag p(itest,jtest,k+1)*qonem,k=1,kk)
return
end
subroutine mxkrtmaj(m,n, sdot, j)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n, j
real, dimension (1-nbdy:idm+nbdy,1-nbdy:jdm+nbdy) :: &
sdot
!
! --- hycom version 1.0 (adapted from micom version 2.8)
!
integer i,k,ka
!
real thknss,ustar3,dpth,ekminv,obuinv,buoyfl,dsgdt,tmn,smn, &
ex,alf1,alf2,cp1,cp3,ape,cc4,spe,pnew,alfadt,betads,thet
!
real ea1, ea2, em1, em2, em3, em4, em5
data ea1, ea2, em1, em2, em3, em4, em5 &
/0.60,0.30,0.45,2.60,1.90,2.30,0.60/ ! Gaspar coefficients
!
# include "stmt_fns.h"
!
locsig=.true.
!
! --- -----------------------------------
! --- mixed layer entrainment/detrainment
! --- -----------------------------------
!
do i=1,ii
if (SEA_P) then
!
! --- determine turb.kin.energy generation due to wind stirring
! --- ustar computed in subr. -thermf-
! --- buoyancy flux (m**2/sec**3), all fluxes into the ocean
! --- note: surface density increases (column is destabilized) if buoyfl < 0
thknss=dp(i,j,1,n)
ustar3=ustar(i,j)**3
tmn=.5*(temp(i,j,1,m)+temp(i,j,1,n))
smn=.5*(saln(i,j,1,m)+saln(i,j,1,n))
dsgdt=dsigdt(tmn,smn)
buoyfl=-g*svref*(dsigds(tmn,smn)* &
(-wtrflx(i,j)*saln(i,j,1,n)+salflx(i,j))*svref+ &
dsgdt *surflx(i,j) *svref/spcifh)
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- option 1 : k r a u s - t u r n e r mixed-layer t.k.e. closure
!
!cc em=0.8*exp(-p(i,j,2)/(50.*onem)) ! hadley centre choice (orig.: 1.25)
!cc en=0.15 ! hadley centre choice (orig.: 0.4)
!cc thermg=-.5*g*((en+1.)*buoyfl+(en-1.)*abs(buoyfl))*rhoref
!cc turgen(i,j)=delt1*(2.*em*g*ustar3*rhoref+thknss*thermg)*rhoref**2
!
! --- find monin-obukhov length in case of receding mixed layer (turgen < 0).
! --- the monin-obukhov length is found by stipulating turgen = 0.
! --- store temporarily in 'sdot'.
!
!cc if (turgen(i,j).lt.0.) then
!cc sdot(i,j)=-2.*em*g*ustar3/min(-epsil,svref*thermg)
!cc else
!cc sdot(i,j)=thknss
!cc end if
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- option 2 : g a s p a r mixed-layer t.k.e. closure
!
dpth=thknss*qonem
ekminv=1./hekman(i,j)
obuinv=buoyfl/max(epsil,ustar3)
ex=exp(min(50.,dpth*obuinv))
alf1=ea1+ea2*max(1.,2.5*dpth*ekminv)*ex
alf2=ea1+ea2*ex
cp1=((1.-em5)*(alf1/alf2)+.5*em4)*athird
cp3=max(0.,(em4*(em2+em3)-(alf1/alf2)*(em2+em3-em3*em5))*athird)
ape=cp3*ustar3-cp1*dpth*buoyfl
!
if(ape.lt.0.) then ! detrainment
turgen(i,j)=(g*delt1*rhoref**3)*ape
sdot(i,j)=max(thkmin*onem,min(thknss,g*cp3/ &
(svref*cp1*max(epsil,obuinv))))
!
else ! entrainment
cc4=2.*em4/(em1*em1) * alf1*alf1
spe=(em2+em3)*ustar3-0.5*dpth*buoyfl
turgen(i,j)=(g*delt1*rhoref**3)*(sqrt((.5*ape-cp1*spe)**2 &
+2.*cc4*ape*spe)-(.5*ape+cp1*spe))/(cc4-cp1)
sdot(i,j)=thknss
end if
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! --- util1,util2 are used to evaluate pot.energy changes during entrainment
util1(i,j)=th3d(i,j,1,n)*thknss
util2(i,j)=th3d(i,j,1,n)*thknss**2
!
! --- find pnew in case of mixed layer deepening (turgen > 0). store in 'sdot'.
! --- entrain as many layers as needed to deplete -turgen-.
!
do k=2,kk
ka=k-1
if (k.eq.2) then
thstar(i,j,ka,1)=th3d(i,j,ka,n)
endif
if (locsig) then
alfadt=0.5* &
(dsiglocdt(temp(i,j,ka,n),saln(i,j,ka,n),p(i,j,k))+ &
dsiglocdt(temp(i,j,k ,n),saln(i,j,k ,n),p(i,j,k)))* &
(temp(i,j,ka,n)-temp(i,j,k,n))
betads=0.5* &
(dsiglocds(temp(i,j,ka,n),saln(i,j,ka,n),p(i,j,k))+ &
dsiglocds(temp(i,j,k ,n),saln(i,j,k ,n),p(i,j,k)))* &
(saln(i,j,ka,n)-saln(i,j,k,n))
thstar(i,j,k,1)=thstar(i,j,ka,1)-alfadt-betads
thet=thstar(i,j,k,1)
else
thet=th3d(i,j,k,n)
endif
pnew=(2.*turgen(i,j)+thet*p(i,j,k)**2-util2(i,j))/ &
max(epsil,thet*p(i,j,k) -util1(i,j))
! --- stop iterating for 'pnew' as soon as pnew < k-th interface pressure
if (pnew.lt.p(i,j,k)) pnew=sdot(i,j)
! --- substitute 'pnew' for monin-obukhov length if mixed layer is deepening
if (turgen(i,j).ge.0.) sdot(i,j)=pnew
!
util1(i,j)=util1(i,j)+thet*dp(i,j,k,n)
util2(i,j)=util2(i,j)+thet*(p(i,j,k+1)**2-p(i,j,k)**2)
enddo !k
endif !ip
enddo !i
return
end
subroutine mxkrtmbj(m,n, sdot, j)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n, j
real, dimension (1-nbdy:idm+nbdy,1-nbdy:jdm+nbdy) :: &
sdot
!
! --- hycom version 1.0 (adapted from micom version 2.8)
!
integer i,k,ktr,num
!
real tdp(idm),sdp(idm),vsflx(idm)
real pnew,thknss,t1,s1,tmxl,smxl, &
dpno,sn,tn,dtemp,dsaln,tnew,snew,z,s_up,a,e,b,f,d,c1msig, &
cc0,cc3,cc1,cc2,x
!
real ccubq,ccubr,ccubqr,ccubs1,ccubs2,ccubrl,ccubim,root,root1, &
root2,root3
!
# include "stmt_fns.h"
!
! --- cubic eqn. solver used in mixed-layer detrainment
ccubq(s)=athird*(cc1/cc3-athird*(cc2/cc3)**2)
ccubr(s)=athird*(.5*(cc1*cc2)/(cc3*cc3)-1.5*cc0/cc3) &
-(athird*cc2/cc3)**3
ccubqr(s)=sqrt(abs(ccubq(s)**3+ccubr(s)**2))
ccubs1(s)=sign(abs(ccubr(s)+ccubqr(s))**athird,ccubr(s)+ccubqr(s))
ccubs2(s)=sign(abs(ccubr(s)-ccubqr(s))**athird,ccubr(s)-ccubqr(s))
root(s)=ccubs1(s)+ccubs2(s)-athird*cc2/cc3
ccubrl(s)=sqrt(max(0.,-ccubq(s))) &
*cos(athird*atan2(ccubqr(s),ccubr(s)))
ccubim(s)=sqrt(max(0.,-ccubq(s))) &
*sin(athird*atan2(ccubqr(s),ccubr(s)))
root1(s)=2.*ccubrl(s)-athird*cc2/cc3
root2(s)=-ccubrl(s)+sqrt(3.)*ccubim(s)-athird*cc2/cc3
root3(s)=-ccubrl(s)-sqrt(3.)*ccubim(s)-athird*cc2/cc3
!
do i=1,ii
if (SEA_P) then
if (epmass.eq.1) then !only actual salt flux
vsflx(i)= salflx(i,j)
elseif (epmass.eq.2) then !river only is mass flux
vsflx(i)=(salflx(i,j)- &
(wtrflx(i,j)-rivflx(i,j))*saln(i,j,1,n))
else !water flux treated as a virtual salt flux
vsflx(i)=(salflx(i,j)-wtrflx(i,j)*saln(i,j,1,n))
endif
! --- store (pnew - pold) in 'sdot'.
! --- don't allow mixed layer to get too deep or too shallow.
sdot(i,j)=min(p(i,j,kk+1),max(thkmin*onem,sdot(i,j)))- &
dp(i,j,1,n)
klist(i,j)=2
tdp(i)=0.
sdp(i)=0.
!
do k=2,kk
pnew=dp(i,j,1,n)+sdot(i,j)
! --- 'tdp,sdp' will be needed for temp./salin. mixing during entrainment
tdp(i)=tdp(i)+temp(i,j,k,n)*(min(pnew,p(i,j,k+1)) &
-min(pnew,p(i,j,k )))
sdp(i)=sdp(i)+saln(i,j,k,n)*(min(pnew,p(i,j,k+1)) &
-min(pnew,p(i,j,k )))
!
! --- if sdot > 0, remove water from layers about to be entrained.
dpo(i,j,k,n)=dp(i,j,k,n) ! diapyc.flux
dp( i,j,k,n)=max(p(i,j,k+1),pnew)-max(p(i,j,k),pnew)
diaflx(i,j,k)=diaflx(i,j,k)+(dp(i,j,k,n)-dpo(i,j,k,n)) ! diapyc.flux
if (pnew.ge.p(i,j,k+1)) then
do ktr= 1,ntracr
tracer(i,j,k,n,ktr)=0.
enddo !ktr
endif
!
! --- if sdot < 0, mixed layer water will be detrained into isopycnic layer
! --- defined in -klist-. to prevent odd/even time step decoupling of mixed-
! --- layer depth, determine -klist- from layer one -th3d- at 2 consecutive
! --- time levels
!
if (max(th3d(i,j,1,m),th3d(i,j,1,n))+sigjmp.ge.th3d(i,j,k,n)) &
klist(i,j)=k+1
!
! --- set t/s in massless layers. step 1: copy salinity from layer(s) above
!
saln(i,j,k,n)=(saln(i,j,k,n)*dp(i,j,k,n)+saln(i,j,k-1,n)*epsil)/ &
( dp(i,j,k,n)+ epsil)
enddo !k
!
! --- set t/s in massless layers. step 2: copy salinity from layer(s) below
!
do k=kk-1,2,-1
saln(i,j,k,n)=(saln(i,j,k,n)*dp(i,j,k,n)+saln(i,j,k+1,n)*epsil)/ &
( dp(i,j,k,n)+ epsil)
enddo !k
!
! --- set t/s in massless layers. step 3: increase salinity where water
! --- is too fresh to fit into layer k
!
do k=2,kk
if (saln(i,j,k,n).lt.salmin(k)) then
saln(i,j,k,n)=salmin(k)
temp(i,j,k,n)=tofsig(th3d(i,j,k,n)+thbase,saln(i,j,k,n))
end if
enddo !k
!
! --- redistribute temp. and salin. during both de- and entrainment
!
thknss=dp(i,j,1,n)
pnew=thknss+sdot(i,j)
t1=temp(i,j,1,n)
s1=saln(i,j,1,n)
!
tmxl=t1+surflx(i,j)*delt1*g/(spcifh*thknss)
smxl=s1+ vsflx(i) *delt1*g/ thknss
!
!diag if (i.eq.itest.and.j.eq.jtest) write (lp,'(i9,2i5,a,3f7.3,f8.2)') &
!diag nstep,i,j,' t,s,sig,dp after diab.forcing',tmxl,smxl, &
!diag sig(tmxl,smxl),thknss*qonem
!
if (sdot(i,j).ge.0.) then
!
! --- (mixed layer d e e p e n s)
!
!diag if (i.eq.itest.and.j.eq.jtest) write (lp,'(i9,2i5,a,f9.3,a)') &
!diag nstep,i,j,' entrain',sdot(i,j)*qonem,' m of water'
!
tmxl=(tmxl*thknss+tdp(i))/pnew
smxl=(smxl*thknss+sdp(i))/pnew
dp(i,j,1,n)=pnew
diaflx(i,j,1)=diaflx(i,j,1)+sdot(i,j) ! diapyc.flux
!
else if (sdot(i,j).lt.-onecm.and.surflx(i,j).ge.0.) then ! sdot < 0
!
! --- (mixed layer r e c e d e s)
!
k=klist(i,j)
if (k.gt.kk) go to 27
!
!diag if (i.eq.itest.and.j.eq.jtest) &
!diag write (lp,'(i9,2i5,a,i2,a,3p,2f7.3)') nstep,i,j, &
!diag ' sig\*(1),sig\*(',k,') =',th3d(i,j,1,n)+thbase, &
!diag th3d(i,j,k,n)+thbase
!
dpno=max(dp(i,j,k,n),0.)
sn=saln(i,j,k,n)
tn=temp(i,j,k,n)
!
!diag if (i.eq.itest.and.j.eq.jtest) &
!diag write (lp,'(i9,2i5,i3,a,2f9.4,f8.2)') nstep,i,j,k, &
!diag ' t,s,dp before detrainment',tn,sn,dpno*qonem
!
! --- distribute last time step's heating and freshwater flux over depth range
! --- 'pnew' (monin-obukhov length). split fossil mixed layer (depth= -sdot=
! --- thknss-pnew) into lower part ('lo') of depth z cooled and detrained into
! --- layer k, and an upper part ('up') heated to match temperature rise in
! --- mixed layer. transfer as much salinity as possible from sublayer 'up' to
! --- sublayer 'lo' without creating new maxima/minima in water column.
!
dtemp=delt1*g*surflx(i,j)/(spcifh*pnew)
dsaln=delt1*g* vsflx(i) / pnew
!
tnew= t1+dtemp
snew=max(s1+dsaln,0.0) !must be non-negative
!
if (s1.le.sn .and. t1.gt.tn) then
!
! --- scenario 1: transfer t/s so as to achieve t_lo = t_k, s_lo = s_k
!
z=-sdot(i,j)*min(1.,dtemp/max(epsil,tnew-tn))*qonem
s_up=s1+(s1-sn)*dtemp/max(epsil*dtemp,t1-tn)
! --- is scenario 1 feasible?
if (s_up.ge.min(snew,s1)) go to 24
end if ! s_1 < s_n
!
! --- scenario 2: (t_lo,s_lo) differ from (tn,sn). main problem now is in
! --- maintaining density in layer k during detrainment. This requires solving
! --- 3rd deg. polynomial cc3*z**3 + cc2*z**2 + cc1*z + cc0 = 0 for z.
!
s_up=min(s1,snew)
! --- new (t,s) in layer k will be t=(a*z+b)/(z+d), s=(e*z+f)/(z+d).
a=tnew
e=s_up
b=(tn*dpno+ dtemp*sdot(i,j))*qonem
f=(sn*dpno+(s_up-s1)*sdot(i,j))*qonem
d=dpno*qonem
!
c1msig=c1-(th3d(i,j,k,n)+thbase)
cc0=d*d*(d*c1msig+b*c2+f*c3)+b*(d*f*c5+b*(d*c4+b*c6+f*c7))
cc3= ( c1msig+a*c2+e*c3)+a*( e*c5+a*( c4+a*c6+e*c7))
cc1=d*(3. *d*c1msig+(2.*b +a*d)*c2+(2. *f+d*e)*c3)+b*((2.*a*d &
+b )*c4+3.*a*b*c6+(2.*a*f+b*e)*c7)+(a*d*f+b*(d*e+ f))*c5
cc2= (3. *d*c1msig+(2.*a*d+b )*c2+(2.*d*e+ f)*c3)+a*((2.*b &
+a*d)*c4+3.*a*b*c6+(2.*b*e+a*f)*c7)+(b *e+a*( f+d*e))*c5
! --- bound cc3 away from zero
cc3=sign(max(1.e-6,abs(cc3)),cc3)
!
x=0.0 ! dummy argument that is never used
if (ccubq(x)**3+ccubr(x)**2.gt.0.) then
! --- one real root
num=1
z=root(x)
else
! --- three real roots
num=3
z=root1(x)
end if
!
!diag if (i.eq.itest.and.j.eq.jtest) then
!diag work(1)=z
!diag if (num.eq.3) then
!diag work(2)=root2(x)
!diag work(3)=root3(x)
!diag end if
!diag write (lp,100) nstep,i,j,' t,s,dp( 1)=',tnew,snew, &
!diag thknss*qonem,'sdot,z=',sdot(i,j)*qonem,z,'t,s,dp(',k,')=',tn, &
!diag sn,dpno*qonem,'real root(s):',(work(nu),nu=1,num)
!diag end if
100 format (i9,2i5,a,2f7.3,f8.2,3x,a,2f8.2/20x,a,i2,a,2f7.3,f8.2, &
3x,a,1p3e11.4)
!
! --- does root fall into appropriate range?
if (z.le.0.005) go to 27
!
! --- ready to detrain lowest 'z' meters from mixed layer
!
temp(i,j,k,n)=(a*z+b)/(z+d)
saln(i,j,k,n)=(e*z+f)/(z+d)
!
24 continue
sdot(i,j)=max(sdot(i,j),-z*onem)
dp(i,j,1,n)=thknss+sdot(i,j)
dp(i,j,k,n) =dpno -sdot(i,j)
smxl=(snew*pnew+s_up*(dp(i,j,1,n)-pnew))/dp(i,j,1,n)
tmxl=tnew
diaflx(i,j,1)=diaflx(i,j,1)+sdot(i,j) ! diapyc.flux
diaflx(i,j,k)=diaflx(i,j,k)-sdot(i,j) ! diapyc.flux
!
! --- inject 'ventilation' tracer into layer k
do ktr= 1,ntracr
tracer(i,j,k,n,ktr)=(tracer(i,j,k,n,ktr)*dpno-sdot(i,j)) &
/(dpno-sdot(i,j))
enddo !ktr
!
!diag if (i.eq.itest.and.j.eq.jtest) &
!diag write (lp,'(i9,2i5,i3,a,2f9.4,f8.2)') nstep,i,j,k, &
!diag ' t,s,dp after detrainment',temp(i,j,k,n),saln(i,j,k,n), &
!diag dp(i,j,k,n)*qonem
!
end if ! sdot > or < 0
!
27 continue
temp(i,j,1,n)=tmxl
saln(i,j,1,n)=smxl
th3d(i,j,1,n)=sig(tmxl,smxl)-thbase
do ktr= 1,ntracr
tracer(i,j,1,n,ktr)=1.0
enddo !ktr
!
dpmixl(i,j,n)=dp( i,j,1,n)
dpbl( i,j) =dp( i,j,1,n)
tmix( i,j) =temp(i,j,1,n)
smix( i,j) =saln(i,j,1,n)
thmix( i,j) =th3d(i,j,1,n)
!
!diag if (i.eq.itest.and.j.eq.jtest) write &
!diag (lp,'(i9,2i5,i3,a,2f9.4,f8.2)') nstep,i,j,1, &
!diag ' final mixed-layer t,s,dp ',tmxl,smxl,dp(i,j,1,n)*qonem
!
endif !ip
enddo !i
return
end
!
!
!> Revision history:
!>
!> June 1995 - removed restriction 'klist(i,j) .le. kk'
!> June 1995 - added code for setting t/s in massless layers below mix.layer
!> Oct. 1995 - removed bug created while changing klist (June 1995 revision):
!> 'if (k.gt.kk) go to 26' now reads 'if (k.gt.kk) go to 27'
!> May 1997 - changed -sdot- into local array
!> Mar. 1998 - added -th3d-
!> Nov. 1998 - fixed bug in computing tnew,snew in situations where z < 0.005
!> Dec. 1998 - replaced dsaln by (s_up-s1) in definition of 'f'
!> Feb. 1999 - limited 'tofsig' call in loop 45 to cases where saln < salmin
!> Aug. 2000 - adapted from micom 2.8 to run within hycom 1.0
!> May 2002 - buoyfl (into the ocean), calculated here
!> Aug. 2011 - replaced dpold,dpoldm with dpo
!> May 2014 - use land/sea masks (e.g. ip) to skip land
!> Aug. 2018 - added wtrflx, salflx now only actual salt flux
!> Nov. 2018 - allow for wtrflx in buoyancy flux
!> May 2024 - added epmass=2 for river only mass exchange