HaniJieunKim
/
Single-cell-transcriptomics-reveals-a-signaling-roadmap-coordinating-endoderm-and-mesoderm-lineage
Public
forked from ZornLab/Single-cell-transcriptomics-reveals-a-signaling-roadmap-coordinating-endoderm-and-mesoderm-lineage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME
134 lines (101 loc) · 7.16 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
README for GitHub Repo "Single-cell-transcriptomics-reveals-a-signaling-roadmap-coordinating-endoderm-and-mesoderm-lineage" from ZornLab
License : GPLv3.0
Contact : Please report Bugs, Issues and Improvements on Github
Requirements: R version[>=3.4], PERL version[>=5.16] and PYTHON version[2.7]
*** Please see that all the source codes have extensively tested on MacOS and Linux [Redhat]. Scripts have not been tested on Windows OS. ***
*** Each Script provides information on Inputs, processing steps and output files *****
########################################################################################
############################################
Cellranger_processing_Scripts:
#################### Install Cellranger [v1.3.0]
#################### Install bcl2fastq [v2.18.0]
#################### Install samtools [v1.8.0]
#################### cellranger.csv is required to run cellranger
#################### PATH to reference transcriptome files is required to run cellranger
#################### PATH-FASTQ path to fastq files in required to run cellranger
#################### For issues running cellranger, please contact 10x genomics
#################### ./cellrangerv1.3.0_Process.sh
#############################################
#############################################
MetaGene_Profile_Calculation:
Two steps: 1) Run GenerateMetaprofile_ForGeneSets.pl 2) Run Seuratv3.0_MetaProfile_Dotplot.r
GenerateMetaprofile_ForGeneSets.pl
################## Script Requires two Inputs : 1) Directory with counts files [For example: Expression_Ligands_BMP.txt [this file has all BMP ligands and their counts] and similarly Expression_Receptors_Hedgehog.txt and so on] 2) OutputDirectory
################## How to run : perl GenerateMetaprofile_ForGeneSets.pl CountsDIR MetaProfileDIR
################## Please see that script requires counts files to be named in the following manner : Expression_Ligands_BMP.txt, Expression_Ligands_RA.txt, Expression_Response_FGF.txt etc.
################## Run time 15-20 mins [For 30 counts files where each file has 5-10 genes and counts across ~14k cells]
Run Seuratv3.0_MetaProfile_Dotplot.r
############ This script processes MetaProfiles of GeneSets to create DotPlots using Seurat [v3.0]
############ Please Refer to Seurat [v3.0] manual for details on parameters and functions
############ Inputs: working dir, Output of GenerateMetaprofile_ForGeneSets.pl, metafile and geneinfo [See example files on Github]
############################################
###########################################
Monocle3_Pseudotime_Analysis:
############ Monoclev3_TrajectoryAnalysis.r processes Pseudotime Analysis using Monocle3 [v3.0 alpha]###############
############ Please note only Markers obtained from Seurat were used to drive Pseudotime analysis
############ Please Refer to Monocle [v3.0 alpha] manual for details on parameters and functions
############ Inputs : Counts Matrix, Metafile [infomration on cells and their classification[if available]], GeneInfo
###########################################
############################################
PseudoSpaceOrdering_Analysis:
############ PseudotimeDistribution_Using_URD.r processes Pseudospace Ordering of cells using URD [v1.0]###############
############ Please Refer to URD [v1.0] manual for details on parameters and functions
############ Please note markers obtained from Seurat were used as variable genes to drive pesudospace analysis
############ Inputs : Counts matrix, Metafile, GeneInfo
############################################
############################################
Seurat_Analysis_Scripts:
############ R scripts processes Cells and their transcriptome using Seurat [v2.3.4]###############
############ Script carries out basic filtering, global scaling based normalization and scaling using Seurat Functions
############ Script regresses out Cellcycle difference between G2m and S phase using ScaleData Function
############ Please Refer to Seurat [v2.3.4] manual for details on parameters and functions
############ for Analysis of endoderm and mesoderm blood, mitochondrial, ribosomal and certain ncRNA were regressed out
############ Inputs : Counts Matrix, Metafile, GeneInfo
#############################################
#############################################
SingleCellVoting_UsingKNN:
Two steps: 1) Run KNN_Classification.r 2) Run Generate_Consensus_NormalizedVoteProbabilityMatrix.pl
Run KNN_Classification.r:
#################### Single Cell Voting using KNN classification algorithm
#################### Please see Github for sample files
#################### Inputs : TrainSet.txt and TestSet.txt
#################### Please use >= R/3.4.4
#################### Some Issues that can occur : problems with installation of KODAMA and knnflex packages and if using > R/3.5.0 then please follow Part2 of the script
#################### Please see Generate_Consensus_NormalizedVoteProbabilityMatrix.pl is not required when using Part2 analysis method in KNN_Classification.r
Generate_Consensus_NormalizedVoteProbabilityMatrix.pl:
############## Perl Script to generate Consensus Normalized vote probability matrix
############## Inputs : 1) ProbabilityMatrix.txt [from KNN_Classification.r] 2) MetaFile.txt [Training Set Cells and their cluster annotation]
############## how to run : perl Script_Generate_Consensus_Matrix.pl ProbabilityMatrix.txt MetaFile.txt
###############################################
###############################################
SPRING_Analysis_Scripts:
################################# Please Download SPRING [v1.0] from (https://github.com/AllonKleinLab/SPRING)
################################# This script is a modified version of the regular SPRING processing script
################################# Script is designed to learn Principle Component Space from most complex dataset [in terms of lineage diversification] and then transform the whole dataset using learnt PC space to enhance lineage diversification through time
################################# Please see SPRING github page on information on file formats and functions
################################# Please use python v2.7
################################# Once SPRING directory is generated please follow the steps below to visualize the SPRING analysis
################################# 1) python -m SimpleHTTPServer 8000 & 2) http://localhost:8000/springViewer.html?datasets/SPRINGDIR_DATASET
###############################################
###############################################
# TranscriptionFactor_EnrichmentAnalysis:
############ Seuratv3.0_TFEnrichment_Analysis.r carries out Transcription Factor Enrichment Analysis using Seurat [v3.0]
############ Inputs: TF counts matrix, Metafile, GeneInfo
############ Please Refer to Seurat [v3.0] manual for details on parameters and functions
############ Animal Transcription Factors are provided along with the scripts
###############################################
##############################################
RShiny App
Please access Shiny App using: (https://research.cchmc.org/ZornLab-singlecell)
### Requirements:
R version[>=3.6]and PYTHON version[2.7]
R packages required:
shiny
reticulate
servr
Seurat
ggplot2
dplyr
DT
ggcorrplot
############################################