-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrnnt_loss.cu
63 lines (55 loc) · 2.07 KB
/
rnnt_loss.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2018 by Contributors
* \file rnnt_loss.cc
* \brief
* \author Mingkun Huang
*/
#include "./rnnt_loss-inl.h"
#include "./rnnt_include/detail/gpu_rnnt.h"
namespace mshadow {
template <typename DType>
void compute_rnnt_cost(const Tensor<gpu, 4, DType> acts, // BTUV
DType *costs, DType *grads, int *labels,
int *label_lengths, int *data_lengths,
void *workspace, int train, int blank_label) {
int minibatch = static_cast<int>(acts.size(0));
int maxT = static_cast<int>(acts.size(1));
int maxU = static_cast<int>(acts.size(2));
int alphabet_size = static_cast<int>(acts.size(3));
warp_rnnt::GpuRNNT<DType> rnnt(minibatch, maxT, maxU, alphabet_size, workspace,
blank_label, acts.stream_->stream_);
if (train) {
rnnt.cost_and_grad(acts.dptr_, grads, costs, labels,
label_lengths, data_lengths);
} else {
rnnt.score_forward(acts.dptr_, costs, labels, label_lengths,
data_lengths);
}
}
} // namespace mshadow
namespace mxnet {
namespace op {
template<>
Operator *CreateOp<gpu>(RNNTLossParam param, int dtype) {
return new RNNTLossOp<gpu>(param);
}
} // namespace op
} // namespace mxnet