-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy patheval_coco.py
219 lines (174 loc) · 8.39 KB
/
eval_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
This script can be used to evaluate a trained model on 3D pose/shape and masks/part segmentation. You first need to download the datasets and preprocess them.
Example usage:
```
python3 eval_coco.py --checkpoint=data/pretrained_model/danet_model_h36m_itw.pt
```
Running the above command will compute the 2D keypoint detection AP on COCO.
"""
import torch
from torch.utils.data import DataLoader
import numpy as np
import argparse
from tqdm import tqdm
import time
import path_config
import constants
from models import hmr, SMPL
from models.danet import DaNet
from datasets import COCODataset
from utils.geometry import perspective_projection
from utils.transforms import transform_preds
from models.core.config import cfg, cfg_from_file
from easydict import EasyDict
import logging
logger = logging.getLogger(__name__)
# Define command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default=None, help='Path to network checkpoint')
parser.add_argument('--batch_size', default=16, type=int, help='Batch size for testing')
parser.add_argument('--shuffle', default=False, action='store_true', help='Shuffle data')
parser.add_argument('--num_workers', default=8, type=int, help='Number of processes for data loading')
parser.add_argument('--result_file', default=None, help='If set, save detections to a .npz file')
parser.add_argument('--regressor', type=str, default='danet', choices=['hmr', 'danet'], help='Name of the SMPL regressor.')
parser.add_argument('--danet_cfg_file', type=str, default='./configs/danet_default.yaml', help='path to config file.')
parser.add_argument('--output_dir', type=str, default='./output', help='output directory.')
def run_evaluation(model, dataset, result_file,
batch_size=32, img_res=224,
num_workers=32, shuffle=False, options=None):
"""Run evaluation on the datasets and metrics we report in the paper. """
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Transfer model to the GPU
model.to(device)
# Load SMPL model
smpl_neutral = SMPL(path_config.SMPL_MODEL_DIR,
create_transl=False).to(device)
save_results = result_file is not None
# Disable shuffling if you want to save the results
if save_results:
shuffle = False
# Create dataloader for the dataset
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
# Store SMPL parameters
smpl_pose = np.zeros((len(dataset), 72))
smpl_betas = np.zeros((len(dataset), 10))
smpl_camera = np.zeros((len(dataset), 3))
pred_joints = np.zeros((len(dataset), 17, 3))
num_joints = 17
num_samples = len(dataset)
print('dataset length: {}'.format(num_samples))
all_preds = np.zeros(
(num_samples, num_joints, 3),
dtype=np.float32
)
all_boxes = np.zeros((num_samples, 6))
image_path = []
filenames = []
imgnums = []
idx = 0
with torch.no_grad():
end = time.time()
for step, batch in enumerate(tqdm(data_loader, desc='Eval', total=len(data_loader))):
images = batch['img'].to(device)
scale = batch['scale'].numpy()
center = batch['center'].numpy()
num_images = images.size(0)
gt_keypoints_2d = batch['keypoints'] # 2D keypoints
# De-normalize 2D keypoints from [-1,1] to pixel space
gt_keypoints_2d_orig = gt_keypoints_2d.clone()
gt_keypoints_2d_orig[:, :, :-1] = 0.5 * img_res * (gt_keypoints_2d_orig[:, :, :-1] + 1)
if options.regressor == 'hmr':
pred_rotmat, pred_betas, pred_camera = model(images)
elif options.regressor == 'danet':
danet_pred_dict = model.infer_net(images)
para_pred = danet_pred_dict['para']
pred_camera = para_pred[:, 0:3].contiguous()
pred_betas = para_pred[:, 3:13].contiguous()
pred_rotmat = para_pred[:, 13:].contiguous().view(-1, 24, 3, 3)
pred_output = smpl_neutral(betas=pred_betas, body_pose=pred_rotmat[:, 1:],
global_orient=pred_rotmat[:, 0].unsqueeze(1), pose2rot=False)
# pred_vertices = pred_output.vertices
pred_J24 = pred_output.joints[:, -24:]
pred_JCOCO = pred_J24[:, constants.J24_TO_JCOCO]
# Convert Weak Perspective Camera [s, tx, ty] to camera translation [tx, ty, tz] in 3D given the bounding box size
# This camera translation can be used in a full perspective projection
pred_cam_t = torch.stack([pred_camera[:,1],
pred_camera[:,2],
2*constants.FOCAL_LENGTH/(img_res * pred_camera[:, 0] +1e-9)],dim=-1)
camera_center = torch.zeros(len(pred_JCOCO), 2, device=pred_camera.device)
pred_keypoints_2d = perspective_projection(pred_JCOCO,
rotation=torch.eye(3, device=pred_camera.device).unsqueeze(0).expand(len(pred_JCOCO), -1, -1),
translation=pred_cam_t,
focal_length=constants.FOCAL_LENGTH,
camera_center=camera_center)
coords = pred_keypoints_2d + (img_res / 2.)
coords = coords.cpu().numpy()
# Normalize keypoints to [-1,1]
# pred_keypoints_2d = pred_keypoints_2d / (img_res / 2.)
gt_keypoints_coco = gt_keypoints_2d_orig[:, -24:][:, constants.J24_TO_JCOCO]
preds = coords.copy()
scale_ = np.array([scale, scale]).transpose()
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(
coords[i], center[i], scale_[i], [img_res, img_res]
)
all_preds[idx:idx + num_images, :, 0:2] = preds[:, :, 0:2]
all_preds[idx:idx + num_images, :, 2:3] = 1.
# double check this all_boxes parts
all_boxes[idx:idx + num_images, 0:2] = center[:, 0:2]
all_boxes[idx:idx + num_images, 2:4] = scale_[:, 0:2]
all_boxes[idx:idx + num_images, 4] = np.prod(scale_*200, 1)
all_boxes[idx:idx + num_images, 5] = 1.
image_path.extend(batch['imgname'])
idx += num_images
ckp_name = options.regressor
name_values, perf_indicator = dataset.evaluate(
all_preds, options.output_dir, all_boxes, image_path, ckp_name,
filenames, imgnums
)
model_name = options.regressor
if isinstance(name_values, list):
for name_value in name_values:
_print_name_value(name_value, model_name)
else:
_print_name_value(name_values, model_name)
# Save reconstructions to a file for further processing
if save_results:
np.savez(result_file, pred_joints=pred_joints, pose=smpl_pose, betas=smpl_betas, camera=smpl_camera)
# markdown format output
def _print_name_value(name_value, full_arch_name):
names = name_value.keys()
values = name_value.values()
num_values = len(name_value)
print(
'| Arch ' +
' '.join(['| {}'.format(name) for name in names]) +
' |'
)
print('|---' * (num_values+1) + '|')
if len(full_arch_name) > 15:
full_arch_name = full_arch_name[:8] + '...'
print(
'| ' + full_arch_name + ' ' +
' '.join(['| {:.3f}'.format(value) for value in values]) +
' |'
)
if __name__ == '__main__':
args = parser.parse_args()
# load danet configures
cfg_from_file(args.danet_cfg_file)
cfg.DANET.REFINEMENT = EasyDict(cfg.DANET.REFINEMENT)
cfg.MSRES_MODEL.EXTRA = EasyDict(cfg.MSRES_MODEL.EXTRA)
if args.regressor == 'hmr':
model = hmr(path_config.SMPL_MEAN_PARAMS)
elif args.regressor == 'danet':
model = DaNet(args, path_config.SMPL_MEAN_PARAMS, pretrained=False)
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
dataset = COCODataset(None, 'coco', 'val2014', is_train=False)
# Run evaluation
run_evaluation(model, dataset, args.result_file,
batch_size=args.batch_size,
shuffle=args.shuffle, options=args)