-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathssd_resnet101.py
71 lines (55 loc) · 2.55 KB
/
ssd_resnet101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import chainer
from chainer.links import Linear, ResNet101Layers
from chainer import functions as F
from chainercv.links.model.ssd.ssd_vgg16 import (_load_npz, _imagenet_mean)
from chainercv.links.model.ssd import Multibox, SSD
class ResNet101FineTuning(chainer.Chain):
def __init__(self, n_class, pretrained_model='auto'):
super(ResNet101FineTuning, self).__init__()
with self.init_scope():
self.base = ResNet101Layers(pretrained_model)
self.fc6 = Linear(2048, n_class)
def __call__(self, x):
activations = self.base(x, layers=["pool5"])
h = activations["pool5"]
return F.softmax(self.fc6(h))
class ResNet101Extractor(ResNet101Layers):
insize = 224
grids = (56, 28, 14, 7)
def __init__(self, pretrained_model='auto'):
super(ResNet101Extractor, self).__init__(pretrained_model)
def __call__(self, x):
layers = ["res2", "res3", "res4", "res5"]
activations = super(ResNet101Extractor, self).__call__(x, layers)
return [activations[layer] for layer in layers]
class SSD224(SSD):
"""Single Shot Multibox Detector with 224x224 inputs.
This is a model of Single Shot Multibox Detector [#]_.
This model uses :class:`ResNet101Extractor` as its feature extractor.
.. [#] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.
Args:
n_fg_class (int): The number of classes excluding the background.
pretrained_model (str): The weight file to be loaded.
The default value is :obj:`None`.
* `filepath`: A path of npz file. In this case, :obj:`n_fg_class` \
must be specified properly.
* :obj:`None`: Do not load weights.
pretrained_extractor (str): The `npz` weight file of `ResNet101Layers`.
If this argument is specified as `auto`, it automatically loads and
converts the caffemodel.
"""
def __init__(self, n_fg_class=None,
pretrained_extractor='auto',
pretrained_model=None):
super(SSD224, self).__init__(
extractor=ResNet101Extractor(pretrained_extractor),
multibox=Multibox(
n_class=n_fg_class + 1,
aspect_ratios=((2, 3), (2, 3), (2, 3), (2, 3))),
steps=(4, 8, 16, 32),
sizes=(15, 30, 60, 120, 244),
mean=_imagenet_mean)
if pretrained_model:
_load_npz(pretrained_model, self)