forked from jonathanwvd/awesome-industrial-datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1588 lines (1550 loc) · 76.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Awesome Industrial Datasets</title>
<!-- Bootstrap 5 CSS -->
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet">
<!-- DataTables CSS -->
<link href="https://cdn.datatables.net/1.13.1/css/dataTables.bootstrap5.min.css" rel="stylesheet">
<!-- Custom Styles -->
<link href="html/assets/css/styles.css" rel="stylesheet">
</head>
<body>
<div class="container mt-5">
<h1 class="mb-4 text-center">Awesome Industrial Datasets</h1>
<!-- Column Toggle Controls -->
<div class="mb-3">
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-labeled" checked>
<label class="form-check-label" for="toggle-labeled">Labeled</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-time-series" checked>
<label class="form-check-label" for="toggle-time-series">Time Series</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-simulation" checked>
<label class="form-check-label" for "toggle-simulation">Simulation</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-missing-values">
<label class="form-check-label" for="toggle-missing-values">Missing Values</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-dataset-characteristics">
<label class="form-check-label" for="toggle-dataset-characteristics">Dataset Characteristics</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-associated-tasks">
<label class="form-check-label" for="toggle-associated-tasks">Associated Tasks</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-number-instances">
<label class="form-check-label" for="toggle-number-instances">Number of Instances</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-number-features">
<label class="form-check-label" for="toggle-number-features">Number of Features</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-date-donated">
<label class="form-check-label" for="toggle-date-donated">Date Donated</label>
</div>
<div class="form-check form-check-inline">
<input type="checkbox" class="form-check-input" id="toggle-summary">
<label class="form-check-label" for="toggle-summary">Summary</label>
</div>
</div>
<!-- Dataset Table -->
<table id="dataset-table" class="table table-striped table-bordered" style="width:100%">
<thead>
<tr>
<th>Dataset Name</th>
<th>Labeled</th>
<th>Time Series</th>
<th>Simulation</th>
<th>Additional Tags</th>
<th>Missing Values</th>
<th>Dataset Characteristics</th>
<th>Associated Tasks</th>
<th>Number of Instances</th>
<th>Number of Features</th>
<th>Date Donated</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<!-- JSON data will be dynamically injected here -->
</tbody>
</table>
</div>
<!-- JSON data injected by generate_documentation.py -->
<!-- Bootstrap 5 JS -->
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script>
<!-- jQuery -->
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
<!-- DataTables JS -->
<script src="https://cdn.datatables.net/1.13.1/js/jquery.dataTables.min.js"></script>
<script src="https://cdn.datatables.net/1.13.1/js/dataTables.bootstrap5.min.js"></script>
<script>
document.addEventListener("DOMContentLoaded", function () {
var jsonData = JSON.parse(document.getElementById("dataset-json").textContent);
// Initialize DataTable with correct column visibility
var table = $('#dataset-table').DataTable({
data: jsonData,
columns: [
{ data: "Dataset Name", render: function (data, type, row) {
return '<a href="' + row.Link + '">' + data + '</a>';
}},
{ data: "Labeled", visible: $("#toggle-labeled").prop("checked") },
{ data: "Time Series", visible: $("#toggle-time-series").prop("checked") },
{ data: "Simulation", visible: $("#toggle-simulation").prop("checked") },
{ data: "Additional Tags", visible: true },
{ data: "Missing Values", visible: $("#toggle-missing-values").prop("checked") },
{ data: "Dataset Characteristics", visible: $("#toggle-dataset-characteristics").prop("checked") },
{ data: "Associated Tasks", visible: $("#toggle-associated-tasks").prop("checked") },
{ data: "Number of Instances", visible: $("#toggle-number-instances").prop("checked") },
{ data: "Number of Features", visible: $("#toggle-number-features").prop("checked") },
{ data: "Date Donated", visible: $("#toggle-date-donated").prop("checked") },
{ data: "Summary", visible: $("#toggle-summary").prop("checked") }
],
responsive: true,
paging: true,
pageLength: 50
});
// Column toggle functionality
$("#toggle-labeled").change(function () {
table.column(1).visible($(this).prop("checked"));
});
$("#toggle-time-series").change(function () {
table.column(2).visible($(this).prop("checked"));
});
$("#toggle-simulation").change(function () {
table.column(3).visible($(this).prop("checked"));
});
$("#toggle-missing-values").change(function () {
table.column(5).visible($(this).prop("checked"));
});
$("#toggle-dataset-characteristics").change(function () {
table.column(6).visible($(this).prop("checked"));
});
$("#toggle-associated-tasks").change(function () {
table.column(7).visible($(this).prop("checked"));
});
$("#toggle-number-instances").change(function () {
table.column(8).visible($(this).prop("checked"));
});
$("#toggle-number-features").change(function () {
table.column(9).visible($(this).prop("checked"));
});
$("#toggle-date-donated").change(function () {
table.column(10).visible($(this).prop("checked"));
});
$("#toggle-summary").change(function () {
table.column(11).visible($(this).prop("checked"));
});
});
</script>
<script type="application/json" id="dataset-json">
[
{
"Dataset Name": "Green House Gas Produce by Different Industry",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Analysis",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Since 2010, Different Type of Gas Release by Different Industry in the World.",
"Additional Tags": "Environmental data; Greenhouse gases; Industry emissions; Sustainability; Emission tracking",
"Link": "html/pages/green_house_gas_produce_by_different_industry.html"
},
{
"Dataset Name": "Secure Water Treatment (SWaT) Dataset",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "Yes",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Classification, Anomaly Detection",
"Number of Instances": "N/A",
"Number of Features": "51",
"Date Donated": "2015-12-02",
"Summary": "SWaT is an operational testbed for water treatment, providing data under normal and attack scenarios for cybersecurity research.",
"Additional Tags": "Water treatment; Cybersecurity; Anomaly detection; Sensor data; Time-series data",
"Link": "html/pages/secure_water_treatment_swat_dataset.html"
},
{
"Dataset Name": "Air Quality",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "Yes",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Regression",
"Number of Instances": "9358",
"Number of Features": "15",
"Date Donated": "2016-03-22",
"Summary": "Contains the responses of a gas multisensor device deployed on the field in an Italian city. Hourly responses averages are recorded along with gas concentrations references from a certified analyzer.",
"Additional Tags": "Air quality monitoring; Sensor data; Pollution levels; Time-series analysis; Environmental data",
"Link": "html/pages/air_quality.html"
},
{
"Dataset Name": "Electricity Load Diagrams 2011-2014",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series",
"Associated Tasks": "Regression, Clustering",
"Number of Instances": "370",
"Number of Features": "140256",
"Date Donated": "2015-03-12",
"Summary": "This data set contains electricity consumption of 370 points/clients.",
"Additional Tags": "Electricity consumption; Time-series data; Energy monitoring; Smart grid; Urban energy use",
"Link": "html/pages/electricity_load_diagrams_2011_2014.html"
},
{
"Dataset Name": "SML2010",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "Yes",
"Dataset Characteristics": "Multivariate, Sequential, Time-Series, Text",
"Associated Tasks": "Regression",
"Number of Instances": "4137",
"Number of Features": "24",
"Date Donated": "2014-01-08",
"Summary": "This dataset is collected from a monitor system mounted in a domotic house. It corresponds to approximately 40 days of monitoring data.",
"Additional Tags": "Domotic systems; Environmental monitoring; Home automation; Time-series data; Energy efficiency",
"Link": "html/pages/sml2010.html"
},
{
"Dataset Name": "Combined Cycle Power Plant",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Regression",
"Number of Instances": "9568",
"Number of Features": "4",
"Date Donated": "2014-03-25",
"Summary": "The dataset contains 9568 data points collected from a Combined Cycle Power Plant over 6 years (2006-2011), when the plant was set to work with full load.",
"Additional Tags": "Power plant; Energy output; Regression tasks; Environmental data; Multivariate data",
"Link": "html/pages/combined_cycle_power_plant.html"
},
{
"Dataset Name": "Car Evaluation",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "1728",
"Number of Features": "6",
"Date Donated": "1997-05-31",
"Summary": "Derived from simple hierarchical decision model, this database may be useful for testing constructive induction and structure discovery methods.",
"Additional Tags": "Automobile evaluation; Decision-making; Categorical data; Multivariate data; Classification task",
"Link": "html/pages/car_evaluation.html"
},
{
"Dataset Name": "Oscillation Detection Artificial Dataset",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "Yes",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series",
"Associated Tasks": "Classification",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "This dataset is developed for oscillation detection in control loops, employing machine learning techniques to enhance diagnostic capabilities in industrial processes.",
"Additional Tags": "Control loops; Oscillation detection; Machine learning; Process optimization",
"Link": "html/pages/oscillation_detection_artificial_dataset.html"
},
{
"Dataset Name": "iV2V and iV2I+ Industrial Datasets",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Classification, Regression",
"Number of Instances": "N/A",
"Number of Features": "N/A",
"Date Donated": "N/A",
"Summary": "These datasets contain vehicle-to-vehicle and vehicle-to-infrastructure communication data captured in industrial environments. They include time-series data with features like signal strength and communication delays, aimed at enhancing connectivity and automation in industrial settings.",
"Additional Tags": "Industrial communication; V2V; V2I; Wireless networks; Signal processing; AGVs; Time-series",
"Link": "html/pages/iv2v_and_iv2i_plus_industrial_datasets.html"
},
{
"Dataset Name": "Steel Plates Faults",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "1941",
"Number of Features": "27",
"Date Donated": "2010-10-25",
"Summary": "A dataset of steel plates faults, classified into 7 different types. The goal was to train machine learning for automatic pattern recognition.",
"Additional Tags": "Steel plates; Fault detection; Manufacturing; Pattern recognition; Classification tasks",
"Link": "html/pages/steel_plates_faults.html"
},
{
"Dataset Name": "Predicting Manufacturing Defects Dataset",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Insights into Factors Influencing Defect Rates and Production Efficiency.",
"Additional Tags": "Manufacturing defects; Quality control; Predictive modeling; Industrial data; Process optimization",
"Link": "html/pages/predicting_manufacturing_defects_dataset.html"
},
{
"Dataset Name": "Brent Oil Prices",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series",
"Associated Tasks": "Regression, Forecasting",
"Number of Instances": "INA",
"Number of Features": "2",
"Date Donated": "INA",
"Summary": "Daily historical Brent Oil Prices available on the U.S. Energy Information Admin.",
"Additional Tags": "Brent oil; Crude oil prices; Economic indicators; Market analysis; Financial markets",
"Link": "html/pages/brent_oil_prices.html"
},
{
"Dataset Name": "C-MAPSS Aircraft Engine Simulator Data",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "Yes",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Regression, Classification",
"Number of Instances": "N/A",
"Number of Features": "N/A",
"Date Donated": "N/A",
"Summary": "This dataset was generated with the C-MAPSS simulator, a tool for the simulation of realistic large commercial turbofan engine data. It includes various operational conditions to test engine performance.",
"Additional Tags": "Aircraft engine; Simulator data; Engine performance; Sensor data; Prognostics",
"Link": "html/pages/c_mapss_aircraft_engine_simulator_data.html"
},
{
"Dataset Name": "Industrial Safety and Health Analytics Database",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification, Analysis",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Industrial labor accident data.",
"Additional Tags": "Workplace safety; Health and safety; Accident reports; Risk management",
"Link": "html/pages/industrial_safety_and_health_analytics_database.html"
},
{
"Dataset Name": "Wine Quality",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification, Regression",
"Number of Instances": "4898",
"Number of Features": "11",
"Date Donated": "2009-10-06",
"Summary": "Two datasets are included, related to red and white vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests (see [Cortez et al., 2009], http://www3.dsi.uminho.pt/pcortez/wine/).",
"Additional Tags": "Wine quality; Physicochemical analysis; Sensory data; Classification tasks; Regression tasks",
"Link": "html/pages/wine_quality.html"
},
{
"Dataset Name": "High Storage System Data for Energy Optimization",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "INA",
"Missing Values": "Yes",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Regression, Clustering",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "This dataset involves energy consumption data from a high storage system, aiming at optimizing energy use through detailed monitoring and predictive analytics.",
"Additional Tags": "Energy optimization; High storage systems; Predictive analytics; Sensor data; Industrial energy efficiency",
"Link": "html/pages/high_storage_system_data_for_energy_optimization.html"
},
{
"Dataset Name": "Global Power Plant Database",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Analysis",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "The Global Power Plant Database provides a comprehensive list of power plants globally, detailing their capacity, generation type, and ownership. It includes both thermal and renewable energy sources.",
"Additional Tags": "Global energy; Power plants; Renewable energy; Energy statistics; Environmental impact",
"Link": "html/pages/global_power_plant_dataset.html"
},
{
"Dataset Name": "Turbofan Engine Degradation Simulation Data Set",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "Yes",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Prognostics",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "2010-09-22",
"Summary": "This dataset, generated with the C-MAPSS tool, models turbofan engine degradation under various conditions to evaluate performance and predict failures.",
"Additional Tags": "Turbofan engines; Engine degradation; Simulation data; Prognostics health management; NASA dataset",
"Link": "html/pages/turbofan_engine_degradation_simulation_data_set.html"
},
{
"Dataset Name": "Hill-Valley",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Sequential",
"Associated Tasks": "Classification",
"Number of Instances": "606",
"Number of Features": "101",
"Date Donated": "2008-03-19",
"Summary": "Each record represents 100 points on a two-dimensional graph. When plotted in order (from 1 through 100) as the Y co-ordinate, the points will create either a Hill (a \u201cbump\u201d in the terrain) or a Valley (a \u201cdip\u201d in the terrain).",
"Additional Tags": "Classification; Feature representation; Graph data; Pattern recognition",
"Link": "html/pages/hill-valley.html"
},
{
"Dataset Name": "Oil and Gas",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification, Regression",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "The Global dataset of oil and natural gas production, prices, exports, and net exports.",
"Additional Tags": "Oil industry; Gas industry; Energy sector; Economic analysis; Market trends",
"Link": "html/pages/oil_and_gas.html"
},
{
"Dataset Name": "Steel Industry Energy Consumption",
"Labeled": "No",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Regression",
"Number of Instances": "35040",
"Number of Features": "9",
"Date Donated": "2023-08-13",
"Summary": "The data is collected from a smart small-scale steel industry in South Korea.",
"Additional Tags": "Energy consumption; Steel and iron production; Electricity usage data; CO2 emissions; Korea Electric Power Corporation",
"Link": "html/pages/steel_industry_energy_consumption.html"
},
{
"Dataset Name": "Appliances Energy Prediction",
"Labeled": "No",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Regression",
"Number of Instances": "19735",
"Number of Features": "28",
"Date Donated": "2017-02-14",
"Summary": "Experimental data used to create regression models of appliances energy use in a low energy building.",
"Additional Tags": "Indoor environment monitoring; ZigBee wireless network; Temperature data; Humidity data; Weather integration; Energy consumption; M-bus energy meters; Airport weather station",
"Link": "html/pages/appliances_energy_prediction.html"
},
{
"Dataset Name": "UK Domestic Appliance-Level Electricity (UK-DALE) dataset",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Regression, Clustering",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "UK-DALE dataset captures electricity usage at appliance level and whole-house mains in UK homes, recording power demand and high-frequency voltage/current.",
"Additional Tags": "Energy consumption; Smart homes; High-frequency data; Time-series analysis; Appliance monitoring",
"Link": "html/pages/uk_dale_dataset.html"
},
{
"Dataset Name": "Bosch Production Line Performance",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "Yes",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "N/A",
"Number of Features": "N/A",
"Date Donated": "2016",
"Summary": "This dataset from Bosch is aimed at reducing production line failures. It contains extensive data on manufacturing processes, focusing on minimizing testing errors and maximizing production line performance.",
"Additional Tags": "Manufacturing; Production line; Quality control; Industrial data; Machine learning",
"Link": "html/pages/bosch_production_line_performance.html"
},
{
"Dataset Name": "Gas sensor array temperature modulation",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Regression, Classification",
"Number of Instances": "4095000",
"Number of Features": "19",
"Date Donated": "2019-04-14",
"Summary": "A chemical detection platform composed of 14 temperature-modulated metal oxide (MOX) gas sensors was exposed during 3 weeks to mixtures of carbon monoxide and humid synthetic air in a gas chamber.",
"Additional Tags": "Gas sensing; MOX sensors; Temperature modulation; Environmental monitoring; Sensor arrays",
"Link": "html/pages/gas_sensor_array_temperature_modulation.html"
},
{
"Dataset Name": "Robot Execution Failures",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Classification",
"Number of Instances": "463",
"Number of Features": "90",
"Date Donated": "1999-04-22",
"Summary": "This dataset contains force and torque measurements on a robot after failure detection. Each failure is characterized by 15 force/torque samples collected at regular time intervals.",
"Additional Tags": "Robotics; Failure detection; Force and torque data; Time-series analysis; Machine learning",
"Link": "html/pages/robot_execution_failures.html"
},
{
"Dataset Name": "GREEND",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Energy Consumption Analysis",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "An energy dataset of households in Austria and Italy",
"Additional Tags": "Energy consumption; Household data; Smart grids; Time-series; Open data",
"Link": "html/pages/greend.html"
},
{
"Dataset Name": "Manufacturing Defects",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Ten days of data on parts defects.",
"Additional Tags": "Manufacturing defects; Quality control; Predictive modeling; Industrial analysis; Process optimization",
"Link": "html/pages/manufacturing_defects.html"
},
{
"Dataset Name": "Parts Manufacturing",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification, Regression",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "A dataset containing measures of parts produced by 20 operators.",
"Additional Tags": "Manufacturing; Industrial data; Quality control; Component measurements; Production optimization",
"Link": "html/pages/parts_manufacturing.html"
},
{
"Dataset Name": "The Reference Energy Disaggregation Data Set (REDD)",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Regression, Anomaly Detection",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "2011",
"Summary": "REDD offers high and low frequency energy usage data from residential buildings, including power measurements and detailed appliance-level consumption.",
"Additional Tags": "Energy consumption; Residential data; High frequency data; Low frequency data; Circuit level monitoring",
"Link": "html/pages/reference_energy_disaggregation_data_set_redd.html"
},
{
"Dataset Name": "Chemical Composition of Ceramic Samples",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification, Clustering",
"Number of Instances": "88",
"Number of Features": "19",
"Date Donated": "2019-01-28",
"Summary": "Classify ceramic samples based on their chemical composition from energy dispersive X-ray fluorescence.",
"Additional Tags": "Ceramic analysis; Chemical composition; X-ray fluorescence; Material science; Historical ceramics",
"Link": "html/pages/chemical_composition_of_ceramic_samples.html"
},
{
"Dataset Name": "Individual household electric power consumption",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "Yes",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Regression, Clustering",
"Number of Instances": "2075259",
"Number of Features": "9",
"Date Donated": "2012-08-29",
"Summary": "Measurements of electric power consumption in one household with a one-minute sampling rate over a period of almost 4 years. Different electrical quantities and some sub-metering values are available.",
"Additional Tags": "Electric power consumption; Time-series data; Energy monitoring; Smart grid; Household energy use",
"Link": "html/pages/individual_household_electric_power_consumption.html"
},
{
"Dataset Name": "OECD Data - Crude Oil Production",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series",
"Associated Tasks": "Analysis",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Crude Oil Production data by OECD.org.",
"Additional Tags": "Crude oil; OECD countries; Energy production; Economic analysis; Market trends",
"Link": "html/pages/oecd_data_crude_oil_production.html"
},
{
"Dataset Name": "SECOM",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "Yes",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification, Causal-Discovery",
"Number of Instances": "1567",
"Number of Features": "591",
"Date Donated": "2008-11-18",
"Summary": "Data from a semi-conductor manufacturing process.",
"Additional Tags": "Manufacturing; Semi-conductor; Process optimization; Feature selection; Industrial data",
"Link": "html/pages/secom.html"
},
{
"Dataset Name": "Gas sensor arrays in open sampling settings",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Classification",
"Number of Instances": "18000",
"Number of Features": "1950000",
"Date Donated": "2013-06-04",
"Summary": "The dataset contains 18000 time-series recordings from a chemical detection platform at six different locations in a wind tunnel facility in response to ten high-priority chemical gaseous substances",
"Additional Tags": "Gas sensing; Sensor arrays; Environmental monitoring; Chemical detection; Open sampling settings",
"Link": "html/pages/gas_sensor_arrays_in_open_sampling_settings.html"
},
{
"Dataset Name": "C-MAPSS Aircraft Engine Simulator Data",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "Yes",
"Missing Values": "NIA",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Regression, Classification",
"Number of Instances": "N/A",
"Number of Features": "N/A",
"Date Donated": "NIA",
"Summary": "This dataset was generated with the C-MAPSS simulator, a tool for the simulation of realistic large commercial turbofan engine data. The data consists of a series of flights with a reasonable linear transition period to allow the engine to change from one flight condition to the next. The fault was injected at a given time in one of the flights and persists throughout the remaining flights, effectively increasing the age of the engine. The intent is to identify which flight and when in the flight the fault occurred.",
"Additional Tags": "Aircraft engine; Simulator data; Engine performance; Sensor data; Prognostics",
"Link": "html/pages/c-mapss_aircraft_engine_simulator_data.html"
},
{
"Dataset Name": "CMAPSS Jet Engine Simulated Data",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "Yes",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Regression, Anomaly Detection",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "The dataset comprises simulated jet engine data from NASA's CMAPSS. It includes operational settings and sensor measurements for engines under various fault conditions, aimed at prognostics and health management research.",
"Additional Tags": "Jet engines; Simulation data; Prognostics; Health management; Aerospace engineering",
"Link": "html/pages/cmapss_jet_engine_simulated_data.html"
},
{
"Dataset Name": "Severstal Steel Defect Detection",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Image, Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "N/A",
"Number of Features": "N/A",
"Date Donated": "2019",
"Summary": "The dataset consists of steel plate images, and the goal is to detect and classify four different types of defects on the surface of the steel. The images are labeled with the type of defect present.",
"Additional Tags": "Steel defects; Surface defects; Industrial quality control; Image classification; Machine learning",
"Link": "html/pages/severstal_steel_defect_detection.html"
},
{
"Dataset Name": "ECO Dataset",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Non-Intrusive Load Monitoring, Occupancy Detection",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "The ECO dataset includes electricity consumption and occupancy data from six Swiss households, collected over eight months for non-intrusive load monitoring and occupancy detection research.",
"Additional Tags": "Electricity consumption; Occupancy detection; Smart meters; Energy efficiency; Household data",
"Link": "html/pages/eco_dataset.html"
},
{
"Dataset Name": "Mechanical Analysis",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "209",
"Number of Features": "8",
"Date Donated": "1990-05-31",
"Summary": "Fault diagnosis problem of electromechanical devices; also PUMPS DATA SET is newer version with domain theory and results",
"Additional Tags": "Fault diagnosis; Electromechanical devices; Component analysis; Classification tasks; Pump analysis",
"Link": "html/pages/mechanical_analysis.html"
},
{
"Dataset Name": "Data-driven prediction of battery cycle life before capacity degradation",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "INA",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Regression",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "This dataset facilitates the prediction of lithium-ion batteries' cycle life before they reach capacity degradation. It includes charge-discharge cycles and various operational parameters.",
"Additional Tags": "Battery life prediction; Lithium-ion batteries; Charge-discharge cycles; Predictive maintenance; Energy storage",
"Link": "html/pages/data_driven_prediction_of_battery_cycle_life_before_capacity_degradation.html"
},
{
"Dataset Name": "Oil Storage Tanks",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Image",
"Associated Tasks": "Object Detection",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Image data of industrial tanks with bounding box annotations.",
"Additional Tags": "Satellite imagery; Oil storage tanks; Object detection; Remote sensing; Geospatial analysis",
"Link": "html/pages/oil_storage_tanks.html"
},
{
"Dataset Name": "SISO-RAW",
"Labeled": "No",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series",
"Associated Tasks": "Classification",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "2020-12-07",
"Summary": "SISO-RAW contains raw data from 52 control loops in the oil and gas sector, recorded over two and a half days. It includes variables like OP, PV, SP, and MV, stored in an HDF5 file.",
"Additional Tags": "Control loops; Process monitoring; Oil and gas industry; Data visualization; Process control",
"Link": "html/pages/siso_raw.html"
},
{
"Dataset Name": "Concrete Compressive Strength",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Regression",
"Number of Instances": "1030",
"Number of Features": "8",
"Date Donated": "2007-08-02",
"Summary": "Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear function of age and ingredients.",
"Additional Tags": "Civil engineering; Material properties; Concrete strength; Regression data; Multivariate data",
"Link": "html/pages/concrete_compressive_strength.html"
},
{
"Dataset Name": "Milling Wear",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Regression, Anomaly Detection",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "2022-11-22",
"Summary": "The dataset comprises experimental data from milling operations, focusing on the wear of milling inserts at different speeds, feeds, and depths of cut. It's aimed at studying the degradation patterns to predict and understand wear mechanisms.",
"Additional Tags": "Milling operations; Tool wear analysis; Degradation study; Predictive maintenance; Operational efficiency",
"Link": "html/pages/milling_wear.html"
},
{
"Dataset Name": "Li-ion Battery Aging Datasets",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Prognostics",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "2010-09-13",
"Summary": "The dataset includes data from Li-ion batteries tested under varying conditions to model degradation and predict failure, focusing on discharge cycles and environmental impacts.",
"Additional Tags": "Battery health; Prognostics; Electrochemical impedance spectroscopy; Deep discharge; Aging effects",
"Link": "html/pages/li_ion_battery_aging_datasets.html"
},
{
"Dataset Name": "NASA Bearing Dataset",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Anomaly Detection, Prognostics",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Prognostic Dataset for Predictive/Preventive Maintenance",
"Additional Tags": "Bearing failure; Vibration analysis; Predictive maintenance; Mechanical diagnostics; Operational monitoring",
"Link": "html/pages/nasa_bearing_dataset.html"
},
{
"Dataset Name": "Steel Dataset",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "This dataset contains information on steel defects, characterized through features related to production variables. It is intended for use in developing models that can predict and classify different types of defects in steel manufacturing.",
"Additional Tags": "Steel manufacturing; Defect detection; Quality control; Industrial inspection; Manufacturing processes",
"Link": "html/pages/steel_dataset.html"
},
{
"Dataset Name": "Detecting Anomalies in Wafer Manufacturing",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification, Anomaly Detection",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Detecting Anomalies using Machine Learning",
"Additional Tags": "Wafer manufacturing; Sensor data; Defect detection; Anomaly detection; Manufacturing quality",
"Link": "html/pages/detecting_anomalies_in_wafer_manufacturing.html"
},
{
"Dataset Name": "ISDB - International Stiction Data Base",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Time-Series, Multivariate",
"Associated Tasks": "Classification",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "An international database comprising industrial control loops predominantly suffering from stiction. It encompasses data from various sectors contributed by multiple international experts.",
"Additional Tags": "Valve stiction; Control loop analysis; Industrial process optimization; Fault diagnosis",
"Link": "html/pages/international_stiction_data_base.html"
},
{
"Dataset Name": "Manufacturing Cost",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Regression",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Relationship between manufacturing cost and number of units.",
"Additional Tags": "Cost analysis; Production efficiency; Cost reduction; Economic analysis; Operational costs",
"Link": "html/pages/manufacturing_cost.html"
},
{
"Dataset Name": "Quality Prediction in a Mining Process",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate, Time-Series",
"Associated Tasks": "Regression",
"Number of Instances": "INA",
"Number of Features": "INA",
"Date Donated": "INA",
"Summary": "Explore real industrial data and help manufacturing plants to be more efficient.",
"Additional Tags": "Mining industry; Process optimization; Quality control; Predictive analytics; Operational efficiency",
"Link": "html/pages/quality_prediction_in_a_mining_process.html"
},
{
"Dataset Name": "PHM Data Challenge",
"Labeled": "Yes",
"Time Series": "Yes",
"Simulation": "No",
"Missing Values": "Yes",
"Dataset Characteristics": "Time-Series",
"Associated Tasks": "Classification, Regression",
"Number of Instances": "N/A",
"Number of Features": "N/A",
"Date Donated": "2015",
"Summary": "The PHM Data Challenge focuses on fault detection and prognostics in industrial plant monitoring, requiring participants to predict and precisely localize plant faults.",
"Additional Tags": "PHM; Fault detection; Prognostics; Industrial monitoring; Time-series analysis; Plant monitoring",
"Link": "html/pages/phm_data_challenge.html"
},
{
"Dataset Name": "Energy efficiency",
"Labeled": "Yes",
"Time Series": "No",
"Simulation": "Yes",
"Missing Values": "No",
"Dataset Characteristics": "Multivariate",
"Associated Tasks": "Classification, Regression",
"Number of Instances": "768",
"Number of Features": "8",
"Date Donated": "2012-11-29",
"Summary": "This study looked into assessing the heating load and cooling load requirements of buildings (that is, energy efficiency) as a function of building parameters.",
"Additional Tags": "Energy efficiency; Building simulation; Heating load; Cooling load; Environmental data",
"Link": "html/pages/energy_efficiency.html"
},
{