-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallelOC1.py
374 lines (323 loc) · 13.8 KB
/
parallelOC1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import math
import numpy
import time
import sys
import Cheetah.Template
import pycuda.autoinit
import pycuda.compiler as nvcc
import pycuda.gpuarray as gpu
from kNN import Classifier
class DecisionTree():
def __init__(self):
self.leftChild = None
self.rightChild = None
self.hyperplan = None
self.leaf = False
def cudaCompile(sourceString, functionName):
sourceModule = nvcc.SourceModule(sourceString)
return sourceModule.get_function(functionName)
def loadSource(filename):
"""Return a file as a Cheetah template"""
sourceFile = open(filename, 'r')
source = sourceFile.read()
sourceFile.close()
return Cheetah.Template.Template(source)
class ParallelOC1(Classifier):
def __init__(self):
self.isTrained = False
def findHyperplan(self, samples, cat, c):
n = samples.shape[0]
d = samples.shape[1]
# Loading and compiling sources
impuritySource = loadSource("impurity.c")
impuritySource.c = c
impuritySource.d = d
impuritySource.n = n
impuritySource.s = d*n
impurity1_1Kernel = cudaCompile(str(impuritySource), "impurity1")
impurity2_1Kernel = cudaCompile(str(impuritySource), "impurity2")
impurity3_1Kernel = cudaCompile(str(impuritySource), "impurity3")
impuritySource.s = n
impurity4_2Kernel = cudaCompile(str(impuritySource), "impurity4")
impurity2_2Kernel = cudaCompile(str(impuritySource), "impurity2")
impurity3_2Kernel = cudaCompile(str(impuritySource), "impurity3")
impuritySource.s = 21
impurity1_3Kernel = cudaCompile(str(impuritySource), "impurity1")
impurity2_3Kernel = cudaCompile(str(impuritySource), "impurity2")
impurity3_3Kernel = cudaCompile(str(impuritySource), "impurity3")
parallelSplitsSource = loadSource("parallel_splits.c")
parallelSplitsSource.n = n
parallelSplitsSource.d = d
parallelSplitsKernel = cudaCompile(str(parallelSplitsSource),
"parallel_splits")
perturbCoefficientsSource = loadSource("pertub_coefficients.c")
perturbCoefficientsSource.c = c
perturbCoefficientsSource.d = d
perturbCoefficientsSource.n = n
perturbCoefficientsSource.s = d*n
perturbCoefficientsKernel1 = cudaCompile(str(perturbCoefficientsSource),
"perturb1")
perturbCoefficientsKernel2 = cudaCompile(str(perturbCoefficientsSource),
"perturb2")
# Allocate memory
splits = numpy.zeros((d*n, d+2), dtype=numpy.float64)
position = numpy.zeros((d*n, n), dtype=numpy.uint32)
position2 = numpy.zeros((n, n), dtype=numpy.uint32)
position3 = numpy.zeros((21, n), dtype=numpy.uint32)
count = numpy.zeros((n*d, c, 2), dtype=numpy.uint32)
count2 = numpy.zeros((n, c, 2), dtype=numpy.uint32)
count3 = numpy.zeros((21, c, 2), dtype=numpy.uint32)
tl = numpy.zeros(n*d, dtype=numpy.uint32)
tl2 = numpy.zeros(d, dtype=numpy.uint32)
tl3 = numpy.zeros(d, dtype=numpy.uint32)
impurity = numpy.zeros(n*d, dtype=numpy.float64)
impurity2 = numpy.zeros(n, dtype=numpy.float64)
impurity3 = numpy.zeros(21, dtype=numpy.float64)
samples_d = gpu.to_gpu(samples)
cat_d = gpu.to_gpu(cat)
splits_d = gpu.to_gpu(splits)
position_d = gpu.to_gpu(position)
position2_d = gpu.to_gpu(position2)
position3_d = gpu.to_gpu(position3)
count_d = gpu.to_gpu(count)
count2_d = gpu.to_gpu(count2)
count3_d = gpu.to_gpu(count3)
tl_d = gpu.to_gpu(tl)
tl2_d = gpu.to_gpu(tl2)
tl3_d = gpu.to_gpu(tl3)
impurity_d = gpu.to_gpu(impurity)
impurity2_d = gpu.to_gpu(impurity2)
impurity3_d = gpu.to_gpu(impurity3)
# Compute the splits on parallel axis
parallelSplitsKernel(samples_d, splits_d, block=(512/d, d, 1),
grid=(n/(512/d)+1, 1, 1))
# Compute impurity of the splits
impurity1_1Kernel(samples_d, splits_d, position_d, block=(32, 32, 1),
grid=(n/32+1, n*d/32+1, 1))
impurity2_1Kernel(cat_d, count_d, tl_d, position_d,
block=(c+1, 512/(c+1), 1),
grid=(1, n*d/(512/(c+1))+1, 1))
impurity3_1Kernel(count_d, tl_d, impurity_d, block=(512, 1, 1),
grid=(n*d/512+1, 1, 1))
#TODO Implement that on GPU
impurity = impurity_d.get()
minimum = impurity[0]
hyperplan = 0
for index, imp in enumerate(impurity):
if imp <= minimum:
hyperplan = index
minimum = imp
hyperplan = splits_d.get()[hyperplan]
hyperplan_d = gpu.to_gpu(hyperplan)
R = 0
while R < 10:
# If not first round, pick a random hyperplan
if R > 0:
hyperplan = numpy.zeros(d+2, dtype=numpy.float64)
hyperplan[:d+1] = numpy.random.uniform(low=-1, high=1, size=d+1)
hyperplan[d+1] = 1
hyperplan_d = gpu.to_gpu(hyperplan)
# Perturb coefficients
U = numpy.zeros(n, dtype=numpy.float64)
U_d = gpu.to_gpu(U)
splits2 = numpy.zeros((n, 2), dtype=numpy.float64)
splits2_d = gpu.to_gpu(splits2)
for m in range(d+1):
perturbCoefficientsKernel1(samples_d, hyperplan_d, U_d,
numpy.uint32(m),
block=(512, 1, 1), grid=(n/512+1, 1, 1))
perturbCoefficientsKernel2(U_d, splits2_d, block=(512, 1, 1),
grid=(n/512+1, 1, 1))
impurity4_2Kernel(U_d, splits2_d, position2_d, block=(32, 32, 1),
grid=(n/32+1, n/32+1, 1))
impurity2_2Kernel(cat_d, count2_d, tl2_d, position2_d,
block=(c+1, 512/(c+1), 1), grid=(1, n*d/512+1, 1))
impurity3_2Kernel(count2_d, tl2_d, impurity2_d,
block=(512, 1, 1), grid=(n*d/512+1, 1, 1))
#TODO Implement that on GPU
impurity = impurity2_d.get()
minimum = impurity[0]
split = 0
for index, imp in enumerate(impurity):
if imp <= minimum:
split = index
minimum = imp
bestSplit = splits2_d.get()[split]
# Updating the hyperplan
H1 = hyperplan.copy()
H1[m] = bestSplit[0]
H2 = numpy.zeros((21, d+2), dtype=numpy.float64)
H2[0] = hyperplan
for alpha in range(1, 21):
H2[alpha] = H1
H2[alpha][d] *= alpha/5.
H_d = gpu.to_gpu(H2)
# Comparing impurity of the current hyperplan and H1
impurity1_3Kernel(samples_d, H_d, position3_d,
block=(24, 21, 1), grid=(n/24+1, 1, 1))
impurity2_3Kernel(cat_d, count3_d, tl3_d, position3_d,
block=(c+1, 21, 1), grid=(1, 1, 1))
impurity3_3Kernel(count3_d, tl3_d, impurity3_d,
block=(21, 1, 1), grid=(1, 1, 1))
#TODO Implement that on GPU
impurity = impurity3_d.get()
minimum = impurity[0]
split = 0
for index, imp in enumerate(impurity):
if imp < minimum:
split = index
minimum = imp
if R == 0:
bestHyperplan = H2[split]
bestImpurity = minimum
bestSieve = position3_d.get()[split]
elif imp < bestImpurity:
bestHyperplan = H2[split]
bestImpurity = minimum
bestSieve = position3_d.get()[split]
R += 1
# Compute the two sets of samples
return (samples[bestSieve>0], cat[bestSieve>0]),\
(samples[bestSieve<1], cat[bestSieve<1]),\
bestHyperplan, bestImpurity
def setImpurity(self, cat, c):
"""Compute the impurity of a set"""
impuritySource = loadSource("set_impurity.c")
impuritySource.c = c
impuritySource.n = cat.shape[0]
impurityKernel = cudaCompile(str(impuritySource), "set_impurity1")
count = numpy.zeros(c, dtype=numpy.uint32)
count_d = gpu.to_gpu(count)
cat_d = gpu.to_gpu(cat)
impurityKernel(cat_d, count_d, block=(c, 1, 1), grid=(1, 1, 1))
count = count_d.get()
# This could be computed on the GPU but it is a really small computation
# I am not sure if it is worth it
return 1 - numpy.sum([x*x for x in count])/float(cat.shape[0]**2), count
def trainClassifier(self, training_data, p=0.4):
# Class array
cat = numpy.array(training_data[:,-1], dtype=numpy.uint32)
# Samples array
samples = numpy.array(training_data[:,:-1], dtype=numpy.float64)
d = samples.shape[1]
# Compute the number of categories
nbCat = set()
for c in cat:
nbCat.add(c)
c = len(nbCat)
self.c = c
# List of sets waiting to be handled
queue = list()
# Initial split
set1, set2, hyperplan, impurity = self.findHyperplan(samples, cat, c)
self.DT = DecisionTree()
self.DT.hyperplan = hyperplan[:-1]
self.length = 3
impurity1, count1 = self.setImpurity(set1[1], c)
if impurity1 > p:
queue.insert(0, (set1, self.DT, "L"))
else:
node = DecisionTree()
node.leaf = True
node.count = count1
self.DT.leftChild = node
impurity2, count2 = self.setImpurity(set2[1], c)
if impurity2 > p:
queue.insert(0, (set2, self.DT, "R"))
else:
node = DecisionTree()
node.leaf = True
node.count = count2
self.DT.rightChild = node
while True:
try:
subset = queue.pop()
samples = subset[0][0]
cat = subset[0][1]
parent = subset[1]
side = subset[2]
except:
break
set1, set2, hyperplan, impurity = self.findHyperplan(samples, cat, c)
node = DecisionTree()
node.hyperplan = hyperplan[:-1]
# Adding a link from the parent to the child
if side == "L":
parent.leftChild = node
else:
parent.rightChild = node
# If the impurity is above the threshold, then split again
impurity, count = self.setImpurity(set1[1], c)
if impurity > p:
queue.insert(0, (set1, node, "L"))
else:
child = DecisionTree()
child.leaf = True
child.count = count
node.leftChild = child
impurity, count = self.setImpurity(set2[1], c)
if impurity > p:
queue.insert(0, (set2, node, "R"))
else:
child = DecisionTree()
child.leaf = True
child.count = count
node.rightChild = child
self.length += 2
# Build and send the tree to GPU
# Note that the structure on the GPU doesn't need to have
# the probability distribution. In any case, a tree is small
# in memory so that it doesn't really matter
self.tree = self.buildTree(d, c)
self.tree_d = gpu.to_gpu(self.tree)
self.isTrained = True
def buildTree(self, d, c):
"""Build the tree to be mapped in GPU memory"""
tree = numpy.zeros((self.length, max(d+1, c)+1), dtype=numpy.float64)
current = 0
next = 1
queue = list([self.DT])
while len(queue) > 0:
node = queue.pop()
if node.leaf:
tree[current][1:c+1] = node.count
else:
tree[current][0] = next
tree[current][1:d+2] = node.hyperplan
queue.insert(0, node.leftChild)
queue.insert(0, node.rightChild)
next += 2
current += 1
return tree
def displayTree(self):
queue = list([self.DT])
while len(queue) > 0:
node = queue.pop()
if node.leaf:
print "Leaf:", node.count
else:
print "Hyperplan:", node.hyperplan
queue.insert(0, node.leftChild)
queue.insert(0, node.rightChild)
def classifyInstance(self, samples):
n = samples.shape[0]
d = samples.shape[1]
classifySource = loadSource("classify.c")
classifySource.d = d
classifySource.n = n
classifySource.l = self.tree.shape[0]
classifySource.w = self.tree.shape[1]
classifyKernel = cudaCompile(str(classifySource), "classify1")
categories = numpy.zeros(n, dtype=numpy.uint32)
categories_d = gpu.to_gpu(categories)
samples_d = gpu.to_gpu(samples)
classifyKernel(samples_d, self.tree_d, categories_d, block=(512, 1, 1),
grid=(n/512 + 1, 1, 1))
# Return the probability distribution (non normalized)
# of the sample
result = numpy.zeros((n, self.c), dtype=numpy.uint32)
for index, cat in enumerate(categories_d.get()):
result[index] = self.tree[cat][1:]
return result
def isTrained(self):
return self.isTrained