This repository has been archived by the owner on Jun 28, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathBertModelBuilder.py
204 lines (186 loc) · 7.58 KB
/
BertModelBuilder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/env python
import plac
import random
from pathlib import Path
from collections import Counter
import spacy
import torch
from spacy.util import minibatch
import tqdm
import wasabi
from AtticusUtils.Loaders import load_atticus_data, create_training_set
from spacy_transformers.util import cyclic_triangular_rate
# Based on sample Spacy code here: https://github.com/explosion/spacy-transformers/blob/v0.6.x/examples/train_textcat.py
@plac.annotations(
model=("Model name", "positional", None, str),
output_dir=("Optional output directory (you'd be stupid not to save this, takes forever to run)", "option", "o", Path),
use_test=("Whether to use the actual test set", "flag", "E"),
batch_size=("Number of docs per batch", "option", "bs", int),
learn_rate=("Learning rate", "option", "lr", float),
max_wpb=("Max words per sub-batch", "option", "wpb", int),
n_texts=("Number of texts to train from (0 uses al of them)", "option", "t", int),
n_iter=("Number of training epochs (0 to autodetect)", "option", "n", int),
pos_label=("Positive label for evaluation", "option", "pl", str),
)
def main(
model='en_trf_bertbaseuncased_lg',
output_dir='/models/BertClassifier',
n_iter=0,
n_texts=0,
batch_size=8,
learn_rate=2e-5,
max_wpb=1000,
use_test=False,
pos_label=None,
):
spacy.util.fix_random_seed(0)
is_using_gpu = spacy.prefer_gpu()
if is_using_gpu:
torch.set_default_tensor_type("torch.cuda.FloatTensor")
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp = spacy.load(model)
print(nlp.pipe_names)
print(f"Loaded model '{model}'")
textcat = nlp.create_pipe(
"trf_textcat",
config={"architecture": "softmax_last_hidden", "words_per_batch": max_wpb},
)
# load the Atticus dataset
print("Loading Atticus Project training data...")
train_data, data_headers = load_atticus_data()
(train_texts, train_cats), (eval_texts, eval_cats) = create_training_set(train_data=train_data, limit=n_texts)
train_cats = [i['cats'] for i in train_cats]
eval_cats = [i['cats'] for i in eval_cats]
# add label to text classifier
print("Add labels to text classifier")
for label in data_headers:
print(label)
textcat.add_label(label)
print("Labels:", textcat.labels)
print("Positive label for evaluation:", pos_label)
nlp.add_pipe(textcat, last=True)
print(f"Using {len(train_texts)} training docs, {len(eval_texts)} evaluation")
split_training_by_sentence = False
if split_training_by_sentence:
# If we're using a model that averages over sentence predictions (we are),
# there are some advantages to just labelling each sentence as an example.
# It means we can mix the sentences into different batches, so we can make
# more frequent updates. It also changes the loss somewhat, in a way that's
# not obviously better -- but it does seem to work well.
train_texts, train_cats = make_sentence_examples(nlp, train_texts, train_cats)
print(f"Extracted {len(train_texts)} training sents")
# total_words = sum(len(text.split()) for text in train_texts)
train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
# Initialize the TextCategorizer, and create an optimizer.
optimizer = nlp.resume_training()
optimizer.alpha = 0.001
optimizer.trf_weight_decay = 0.005
optimizer.L2 = 0.0
learn_rates = cyclic_triangular_rate(
learn_rate / 3, learn_rate * 3, 2 * len(train_data) // batch_size
)
print("Training the model...")
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
pbar = tqdm.tqdm(total=100, leave=False)
results = []
epoch = 0
step = 0
eval_every = 100
patience = 3
while True:
# Train and evaluate
losses = Counter()
random.shuffle(train_data)
batches = minibatch(train_data, size=batch_size)
for batch in batches:
optimizer.trf_lr = next(learn_rates)
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, drop=0.1, losses=losses)
pbar.update(1)
if step and (step % eval_every) == 0:
pbar.close()
with nlp.use_params(optimizer.averages):
scores = evaluate(nlp, eval_texts, eval_cats, pos_label)
results.append((scores["textcat_f"], step, epoch))
print(
"{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format(
losses["trf_textcat"],
scores["textcat_p"],
scores["textcat_r"],
scores["textcat_f"],
)
)
pbar = tqdm.tqdm(total=eval_every, leave=False)
step += 1
epoch += 1
# Stop if n_iter is 0 and we blow past user hard-coded n_iter limit
if 0 < n_iter <= epoch:
break
# Stop if no improvement in HP.patience checkpoints
if results:
best_score, best_step, best_epoch = max(results)
if ((step - best_step) // eval_every) >= patience:
break
msg = wasabi.Printer()
table_widths = [2, 4, 6]
msg.info(f"Best scoring checkpoints")
msg.row(["Epoch", "Step", "Score"], widths=table_widths)
msg.row(["-" * width for width in table_widths])
for score, step, epoch in sorted(results, reverse=True)[:10]:
msg.row([epoch, step, "%.2f" % (score * 100)], widths=table_widths)
# Test the trained model
test_text = eval_texts[0]
doc = nlp(test_text)
print(test_text, doc.cats)
if output_dir is not None:
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
print(test_text, doc2.cats)
def make_sentence_examples(nlp, texts, labels):
"""Treat each sentence of the document as an instance, using the doc labels."""
sents = []
sent_cats = []
for text, cats in zip(texts, labels):
doc = nlp.make_doc(text)
doc = nlp.get_pipe("sentencizer")(doc)
for sent in doc.sents:
sents.append(sent.text)
sent_cats.append(cats)
return sents, sent_cats
def evaluate(nlp, texts, cats, pos_label):
tp = 0.0 # True positives
fp = 0.0 # False positives
fn = 0.0 # False negatives
tn = 0.0 # True negatives
total_words = sum(len(text.split()) for text in texts)
with tqdm.tqdm(total=total_words, leave=False) as pbar:
for i, doc in enumerate(nlp.pipe(texts, batch_size=8)):
gold = cats[i]
for label, score in doc.cats.items():
if label not in gold:
continue
if score >= 0.5 and gold[label] >= 0.5:
tp += 1.0
elif score >= 0.5 and gold[label] < 0.5:
fp += 1.0
elif score < 0.5 and gold[label] < 0.5:
tn += 1
elif score < 0.5 and gold[label] >= 0.5:
fn += 1
pbar.update(len(doc.text.split()))
precision = tp / (tp + fp + 1e-8)
recall = tp / (tp + fn + 1e-8)
if (precision + recall) == 0:
f_score = 0.0
else:
f_score = 2 * (precision * recall) / (precision + recall)
return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
if __name__ == "__main__":
plac.call(main)