-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfft.cpp
213 lines (203 loc) · 12 KB
/
fft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
* fft.cpp is Based on
* Free FFT and convolution (C)
*
* Copyright (c) 2019 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
#include <math.h>
#include <stdint.h>
#include "common.hpp"
// Use table increase transform speed, increase code size on ~700 bytes
// Use compact table, increase code size on ~200 bytes, and not decrease speed
#define FFT_USE_SIN_COS_TABLE
static uint16_t reverse_bits(uint16_t x, int n) {
uint16_t result = 0;
for (int i = 0; i < n; i++, x >>= 1)
result = (result << 1) | (x & 1U);
return result;
}
#ifdef FFT_USE_SIN_COS_TABLE
#if FFT_SIZE == 256
static const float sin_table_256[] = {
/*
* float has about 7.2 digits of precision
for (uint8_t i = 0; i < FFT_SIZE - (FFT_SIZE / 4); i++) {
printf("% .8f,%c", sin(2 * M_PI * i / FFT_SIZE), i % 8 == 7 ? '\n' : ' ');
}
*/
// for FFT_SIZE = 256
0.00000000, 0.02454123, 0.04906767, 0.07356456, 0.09801714, 0.12241068, 0.14673047, 0.17096189,
0.19509032, 0.21910124, 0.24298018, 0.26671276, 0.29028468, 0.31368174, 0.33688985, 0.35989504,
0.38268343, 0.40524131, 0.42755509, 0.44961133, 0.47139674, 0.49289819, 0.51410274, 0.53499762,
0.55557023, 0.57580819, 0.59569930, 0.61523159, 0.63439328, 0.65317284, 0.67155895, 0.68954054,
0.70710678, 0.72424708, 0.74095113, 0.75720885, 0.77301045, 0.78834643, 0.80320753, 0.81758481,
0.83146961, 0.84485357, 0.85772861, 0.87008699, 0.88192126, 0.89322430, 0.90398929, 0.91420976,
0.92387953, 0.93299280, 0.94154407, 0.94952818, 0.95694034, 0.96377607, 0.97003125, 0.97570213,
0.98078528, 0.98527764, 0.98917651, 0.99247953, 0.99518473, 0.99729046, 0.99879546, 0.99969882,
1.00000000,/* 0.99969882, 0.99879546, 0.99729046, 0.99518473, 0.99247953, 0.98917651, 0.98527764,
0.98078528, 0.97570213, 0.97003125, 0.96377607, 0.95694034, 0.94952818, 0.94154407, 0.93299280,
0.92387953, 0.91420976, 0.90398929, 0.89322430, 0.88192126, 0.87008699, 0.85772861, 0.84485357,
0.83146961, 0.81758481, 0.80320753, 0.78834643, 0.77301045, 0.75720885, 0.74095113, 0.72424708,
0.70710678, 0.68954054, 0.67155895, 0.65317284, 0.63439328, 0.61523159, 0.59569930, 0.57580819,
0.55557023, 0.53499762, 0.51410274, 0.49289819, 0.47139674, 0.44961133, 0.42755509, 0.40524131,
0.38268343, 0.35989504, 0.33688985, 0.31368174, 0.29028468, 0.26671276, 0.24298018, 0.21910124,
0.19509032, 0.17096189, 0.14673047, 0.12241068, 0.09801714, 0.07356456, 0.04906767, 0.02454123,
0.00000000, -0.02454123, -0.04906767, -0.07356456, -0.09801714, -0.12241068, -0.14673047, -0.17096189,
-0.19509032, -0.21910124, -0.24298018, -0.26671276, -0.29028468, -0.31368174, -0.33688985, -0.35989504,
-0.38268343, -0.40524131, -0.42755509, -0.44961133, -0.47139674, -0.49289819, -0.51410274, -0.53499762,
-0.55557023, -0.57580819, -0.59569930, -0.61523159, -0.63439328, -0.65317284, -0.67155895, -0.68954054,
-0.70710678, -0.72424708, -0.74095113, -0.75720885, -0.77301045, -0.78834643, -0.80320753, -0.81758481,
-0.83146961, -0.84485357, -0.85772861, -0.87008699, -0.88192126, -0.89322430, -0.90398929, -0.91420976,
-0.92387953, -0.93299280, -0.94154407, -0.94952818, -0.95694034, -0.96377607, -0.97003125, -0.97570213,
-0.98078528, -0.98527764, -0.98917651, -0.99247953, -0.99518473, -0.99729046, -0.99879546, -0.99969882,*/
};
// FFT_SIZE = 2^N
#define FFT_N 8
// full size table:
// sin = sin_table[i ]
// cos = sin_table[i+64]
//#define SIN(i) sin_table_256[(i)]
//#define COS(i) sin_table_256[(i)+64]
// for size use only 0-64 indexes
// sin = i > 64 ? sin_table[128-i] : sin_table[ i];
// cos = i > 64 ?-sin_table[ i-64] : sin_table[64-i];
#define SIN(i) ((i) > 64 ? sin_table_256[128-(i)] : sin_table_256[ (i)])
#define COS(i) ((i) > 64 ?-sin_table_256[ (i)-64] : sin_table_256[64-(i)])
#elif FFT_SIZE == 512
static const float sin_table_512[] = {
/*
* float has about 7.2 digits of precision
for (int i = 0; i < FFT_SIZE - (FFT_SIZE / 4); i++) {
printf("% .8f,%c", sin(2 * M_PI * i / FFT_SIZE), i % 8 == 7 ? '\n' : ' ');
}
*/
// For FFT_SIZE = 512
0.00000000, 0.01227154, 0.02454123, 0.03680722, 0.04906767, 0.06132074, 0.07356456, 0.08579731,
0.09801714, 0.11022221, 0.12241068, 0.13458071, 0.14673047, 0.15885814, 0.17096189, 0.18303989,
0.19509032, 0.20711138, 0.21910124, 0.23105811, 0.24298018, 0.25486566, 0.26671276, 0.27851969,
0.29028468, 0.30200595, 0.31368174, 0.32531029, 0.33688985, 0.34841868, 0.35989504, 0.37131719,
0.38268343, 0.39399204, 0.40524131, 0.41642956, 0.42755509, 0.43861624, 0.44961133, 0.46053871,
0.47139674, 0.48218377, 0.49289819, 0.50353838, 0.51410274, 0.52458968, 0.53499762, 0.54532499,
0.55557023, 0.56573181, 0.57580819, 0.58579786, 0.59569930, 0.60551104, 0.61523159, 0.62485949,
0.63439328, 0.64383154, 0.65317284, 0.66241578, 0.67155895, 0.68060100, 0.68954054, 0.69837625,
0.70710678, 0.71573083, 0.72424708, 0.73265427, 0.74095113, 0.74913639, 0.75720885, 0.76516727,
0.77301045, 0.78073723, 0.78834643, 0.79583690, 0.80320753, 0.81045720, 0.81758481, 0.82458930,
0.83146961, 0.83822471, 0.84485357, 0.85135519, 0.85772861, 0.86397286, 0.87008699, 0.87607009,
0.88192126, 0.88763962, 0.89322430, 0.89867447, 0.90398929, 0.90916798, 0.91420976, 0.91911385,
0.92387953, 0.92850608, 0.93299280, 0.93733901, 0.94154407, 0.94560733, 0.94952818, 0.95330604,
0.95694034, 0.96043052, 0.96377607, 0.96697647, 0.97003125, 0.97293995, 0.97570213, 0.97831737,
0.98078528, 0.98310549, 0.98527764, 0.98730142, 0.98917651, 0.99090264, 0.99247953, 0.99390697,
0.99518473, 0.99631261, 0.99729046, 0.99811811, 0.99879546, 0.99932238, 0.99969882, 0.99992470,
1.00000000,/* 0.99992470, 0.99969882, 0.99932238, 0.99879546, 0.99811811, 0.99729046, 0.99631261,
0.99518473, 0.99390697, 0.99247953, 0.99090264, 0.98917651, 0.98730142, 0.98527764, 0.98310549,
0.98078528, 0.97831737, 0.97570213, 0.97293995, 0.97003125, 0.96697647, 0.96377607, 0.96043052,
0.95694034, 0.95330604, 0.94952818, 0.94560733, 0.94154407, 0.93733901, 0.93299280, 0.92850608,
0.92387953, 0.91911385, 0.91420976, 0.90916798, 0.90398929, 0.89867447, 0.89322430, 0.88763962,
0.88192126, 0.87607009, 0.87008699, 0.86397286, 0.85772861, 0.85135519, 0.84485357, 0.83822471,
0.83146961, 0.82458930, 0.81758481, 0.81045720, 0.80320753, 0.79583690, 0.78834643, 0.78073723,
0.77301045, 0.76516727, 0.75720885, 0.74913639, 0.74095113, 0.73265427, 0.72424708, 0.71573083,
0.70710678, 0.69837625, 0.68954054, 0.68060100, 0.67155895, 0.66241578, 0.65317284, 0.64383154,
0.63439328, 0.62485949, 0.61523159, 0.60551104, 0.59569930, 0.58579786, 0.57580819, 0.56573181,
0.55557023, 0.54532499, 0.53499762, 0.52458968, 0.51410274, 0.50353838, 0.49289819, 0.48218377,
0.47139674, 0.46053871, 0.44961133, 0.43861624, 0.42755509, 0.41642956, 0.40524131, 0.39399204,
0.38268343, 0.37131719, 0.35989504, 0.34841868, 0.33688985, 0.32531029, 0.31368174, 0.30200595,
0.29028468, 0.27851969, 0.26671276, 0.25486566, 0.24298018, 0.23105811, 0.21910124, 0.20711138,
0.19509032, 0.18303989, 0.17096189, 0.15885814, 0.14673047, 0.13458071, 0.12241068, 0.11022221,
0.09801714, 0.08579731, 0.07356456, 0.06132074, 0.04906767, 0.03680722, 0.02454123, 0.01227154,
0.00000000, -0.01227154, -0.02454123, -0.03680722, -0.04906767, -0.06132074, -0.07356456, -0.08579731,
-0.09801714, -0.11022221, -0.12241068, -0.13458071, -0.14673047, -0.15885814, -0.17096189, -0.18303989,
-0.19509032, -0.20711138, -0.21910124, -0.23105811, -0.24298018, -0.25486566, -0.26671276, -0.27851969,
-0.29028468, -0.30200595, -0.31368174, -0.32531029, -0.33688985, -0.34841868, -0.35989504, -0.37131719,
-0.38268343, -0.39399204, -0.40524131, -0.41642956, -0.42755509, -0.43861624, -0.44961133, -0.46053871,
-0.47139674, -0.48218377, -0.49289819, -0.50353838, -0.51410274, -0.52458968, -0.53499762, -0.54532499,
-0.55557023, -0.56573181, -0.57580819, -0.58579786, -0.59569930, -0.60551104, -0.61523159, -0.62485949,
-0.63439328, -0.64383154, -0.65317284, -0.66241578, -0.67155895, -0.68060100, -0.68954054, -0.69837625,
-0.70710678, -0.71573083, -0.72424708, -0.73265427, -0.74095113, -0.74913639, -0.75720885, -0.76516727,
-0.77301045, -0.78073723, -0.78834643, -0.79583690, -0.80320753, -0.81045720, -0.81758481, -0.82458930,
-0.83146961, -0.83822471, -0.84485357, -0.85135519, -0.85772861, -0.86397286, -0.87008699, -0.87607009,
-0.88192126, -0.88763962, -0.89322430, -0.89867447, -0.90398929, -0.90916798, -0.91420976, -0.91911385,
-0.92387953, -0.92850608, -0.93299280, -0.93733901, -0.94154407, -0.94560733, -0.94952818, -0.95330604,
-0.95694034, -0.96043052, -0.96377607, -0.96697647, -0.97003125, -0.97293995, -0.97570213, -0.97831737,
-0.98078528, -0.98310549, -0.98527764, -0.98730142, -0.98917651, -0.99090264, -0.99247953, -0.99390697,
-0.99518473, -0.99631261, -0.99729046, -0.99811811, -0.99879546, -0.99932238, -0.99969882, -0.99992470*/
};
// FFT_SIZE = 2^N
#define FFT_N 9
// full size table:
// sin = sin_table[i ]
// cos = sin_table[i+128]
//#define SIN(i) sin_table_512[(i) ]
//#define COS(i) sin_table_512[(i)+128]
// for size use only 0-128 indexes
// sin = i > 128 ? sin_table[256-i] : sin_table[ i];
// cos = i > 128 ?-sin_table[i-128] : sin_table[128-i];
#define SIN(i) ((i) > 128 ? sin_table_512[256-(i)] : sin_table_512[ (i)])
#define COS(i) ((i) > 128 ?-sin_table_512[(i)-128] : sin_table_512[128-(i)])
#else
#error "Need build table for new FFT size"
#endif
#endif
/***
* dir = forward: 0, inverse: 1
* https://www.nayuki.io/res/free-small-fft-in-multiple-languages/fft.c
*/
void fft(float array[][2], const uint8_t dir) {
const uint16_t n = FFT_SIZE;
const uint8_t levels = FFT_N; // log2(n)
const uint8_t real = dir & 1;
const uint8_t imag = ~real & 1;
uint16_t i;
for (i = 0; i < n; i++) {
uint16_t j = reverse_bits(i, levels);
if (j > i) {
float temp = array[i][real];
array[i][real] = array[j][real];
array[j][real] = temp;
temp = array[i][imag];
array[i][imag] = array[j][imag];
array[j][imag] = temp;
}
}
const uint16_t size = 2;
uint16_t halfsize = size / 2;
uint16_t tablestep = n / size;
uint16_t j, k;
// Cooley-Tukey decimation-in-time radix-2 FFT
for (;tablestep; tablestep>>=1, halfsize<<=1) {
for (i = 0; i < n; i+=2*halfsize) {
for (j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
uint16_t l = j + halfsize;
#ifdef FFT_USE_SIN_COS_TABLE
float s = SIN(k);
float c = COS(k);
#else
float c = cos(2 * VNA_PI * k / FFT_SIZE);
float s = sin(2 * VNA_PI * k / FFT_SIZE);
#endif
float tpre = array[l][real] * c + array[l][imag] * s;
float tpim = -array[l][real] * s + array[l][imag] * c;
array[l][real] = array[j][real] - tpre;
array[l][imag] = array[j][imag] - tpim;
array[j][real] += tpre;
array[j][imag] += tpim;
}
}
}
}