-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfair-bot-self-cooperates.lagda
329 lines (260 loc) · 10.2 KB
/
fair-bot-self-cooperates.lagda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
\section{Proving that FairBot Cooperates with Itself} \label{sec:fair-bot-self-cooperates}
\AgdaHide{
\begin{code}
module fair-bot-self-cooperates where
open import common
\end{code}
}
We begin with the definitions of a few particularly useful dependent
combinators:
\begin{code}
_∘_ : ∀ {A : Set}
{B : A → Set}
{C : {x : A} → B x → Set}
→ ({x : A} (y : B x) → C y)
→ (g : (x : A) → B x) (x : A)
→ C (g x)
f ∘ g = λ x → f (g x)
infixl 8 _ˢ_
_ˢ_ : ∀ {A : Set}
{B : A → Set}
{C : (x : A) → B x → Set}
→ ((x : A) (y : B x) → C x y)
→ (g : (x : A) → B x) (x : A)
→ C x (g x)
f ˢ g = λ x → f x (g x)
ᵏ : {A B : Set} → A → B → A
ᵏ a b = a
^ : ∀ {S : Set} {T : S → Set} {P : Σ S T → Set}
→ ((σ : Σ S T) → P σ)
→ (s : S) (t : T s) → P (s , t)
^ f s t = f (s , t)
\end{code}
It turns out that we can define all the things we need for proving
self-cooperation of FairBot in a variant of the simply typed lambda
calculus (STLC). In order to do this, we do not index types over
contexts. Rather than using \mintinline{Agda}|Term {Γ} T|, we will
denote the type of terms in context \mintinline{Agda}|Γ| of type
\mintinline{Agda}|T| as \mintinline{Agda}|Γ ⊢ T|, the standard
notation for ``provability''. Since our types are no longer indexed
over contexts, we can represent a context as a list of types.
\begin{code}
infixr 5 _⊢_ _‘⊢’_
infixr 10 _‘→’_ _‘×’_
data Type : Set where
_‘⊢’_ : List Type → Type → Type
_‘→’_ _‘×’_ : Type → Type → Type
‘⊥’ ‘⊤’ : Type
Context = List Type
\end{code}
We will then need some way to handle binding.
For simplicity, we'll make use of a dependent form of DeBrujin variables.
\begin{code}
data _∈_ (T : Type) : Context → Set where
\end{code}
First we want our ``variable zero'', which lets us pick off the ``top'' element of the context.
\begin{code}
top : ∀ {Γ} → T ∈ (T :: Γ)
\end{code}
Then we want a way to extend variables to work in larger contexts.
\begin{code}
pop : ∀ {Γ S} → T ∈ Γ → T ∈ (S :: Γ)
\end{code}
And, finally, we are ready to define the term language for our extended STLC.
\begin{code}
data _⊢_ (Γ : Context) : Type → Set where
\end{code}
The next few constructors are fairly standard.
Before anything else, we want to be able to lift bindings into terms.
\begin{code}
var : ∀ {T} → T ∈ Γ → Γ ⊢ T
\end{code}
Then the intro rules for all of our easier datatypes.
\begin{code}
<> : Γ ⊢ ‘⊤’
_,_ : ∀ {A B} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ‘×’ B
‘⊥’-elim : ∀ {A} → Γ ⊢ ‘⊥’ → Γ ⊢ A
π₁ : ∀ {A B} → Γ ⊢ A ‘×’ B → Γ ⊢ A
π₂ : ∀ {A B} → Γ ⊢ A ‘×’ B → Γ ⊢ B
‘λ’ : ∀ {A B} → (A :: Γ) ⊢ B → Γ ⊢ (A ‘→’ B)
_‘’ₐ_ : ∀ {A B} → Γ ⊢ (A ‘→’ B) → Γ ⊢ A → Γ ⊢ B
\end{code}
At this point things become more delicate.
To properly capture Gӧdel--Lӧb modal logic, abbreviated as GL, we want our theory to validate the rules
\begin{enumerate}
\item \mintinline{Agda}|⊢ A → ⊢ □ A|
\item \mintinline{Agda}|⊢ □ A ‘→’ □ □ A|
\end{enumerate}
However, it should \emph{not} validate \mintinline{Agda}|⊢ A ‘→’ □ A|.
If we only had the unary \mintinline{Agda}|□| operator we would run into difficulty later.
Crucially, we couldn't add the rule \mintinline{Agda}|Γ ⊢ A → Γ ⊢ □ A|, since this would let us prove \mintinline{Agda}|A ‘→’ □ A|.
We will use Gödel quotes to denote the constructor corresponding to rule 1:
\begin{code}
⌜_⌝ : ∀ {Δ A} → Δ ⊢ A → Γ ⊢ (Δ ‘⊢’ A)
\end{code}
Similarly, we will write the rule validating \mintinline{Agda}|□ A ‘→’ □ □ A| as \mintinline{Agda}|repr|.
\begin{code}
repr : ∀ {Δ A} → Γ ⊢ (Δ ‘⊢’ A) → Γ ⊢ (Δ ‘⊢’ (Δ ‘⊢’ A))
\end{code}
We would like to be able to apply functions under \mintinline{Agda}|□|, and for this we introduce the so-called ``distribution'' rule.
In GL, it takes the form \mintinline{Agda}|⊢ □ (A ‘→’ B) → ⊢ (□ A ‘→’ □ B)|.
For us it is not much more complicated.
\begin{code}
dist : ∀ {Δ A B}
→ Γ ⊢ (Δ ‘⊢’ (A ‘→’ B))
→ Γ ⊢ (Δ ‘⊢’ A)
→ Γ ⊢ (Δ ‘⊢’ B)
\end{code}
And, finally, we include the Löbian axiom.
\begin{code}
Lӧb : ∀ {Δ A}
→ Γ ⊢ (Δ ‘⊢’ ((Δ ‘⊢’ A) ‘→’ A))
→ Γ ⊢ (Δ ‘⊢’ A)
\end{code}
\AgdaHide{
\begin{code}
infixl 50 _‘’ₐ_
\end{code}
}
From these constructors we can prove the simpler form of the Lӧb rule.
\begin{code}
lӧb : ∀ {Γ A} → Γ ⊢ ((Γ ‘⊢’ A) ‘→’ A) → Γ ⊢ A
lӧb t = t ‘’ₐ Lӧb ⌜ t ⌝
\end{code}
Of course, because we are using DeBrujin indices, before we can do too much we'll need to give an account of lifting.
Thankfully, unlike when we were dealing with dependent type theory, we can define these computationally, and get for free all the congruences we had to add as axioms before.
Our definition of weakening is unremarkable, and sufficiently simple
that Agsy, Agda's automatic proof-finder, was able to fill in all of
the code; we include it in the artifact and elide all but the type
signature from the paper.
\AgdaHide{
\begin{code}
lift-var : ∀ {Γ A} T Δ → A ∈ (Δ ++ Γ) → A ∈ (Δ ++ (T :: Γ))
lift-var T ε v = pop v
lift-var T (A :: Δ) top = top
lift-var T (x :: Δ) (pop v) = pop (lift-var T Δ v)
\end{code}
}
\begin{code}
lift-tm
: ∀ {Γ A} T Δ → (Δ ++ Γ) ⊢ A → (Δ ++ (T :: Γ)) ⊢ A
\end{code}
\AgdaHide{
\begin{code}
lift-tm T Δ (var x) = var (lift-var T Δ x)
lift-tm T Δ <> = <>
lift-tm T Δ (a , b) = lift-tm T Δ a , lift-tm T Δ b
lift-tm T Δ (‘⊥’-elim t) = ‘⊥’-elim (lift-tm T Δ t)
lift-tm T Δ (π₁ t) = π₁ (lift-tm T Δ t)
lift-tm T Δ (π₂ t) = π₂ (lift-tm T Δ t)
lift-tm T Δ (‘λ’ t) = ‘λ’ (lift-tm T (_ :: Δ) t)
lift-tm T Δ (t ‘’ₐ t₁) = lift-tm T Δ t ‘’ₐ lift-tm T Δ t₁
lift-tm T Δ ⌜ t ⌝ = ⌜ t ⌝
lift-tm T Δ (repr t) = repr (lift-tm T Δ t)
lift-tm T Δ (dist t t₁) = dist (lift-tm T Δ t) (lift-tm T Δ t₁)
lift-tm T Δ (Lӧb t) = Lӧb (lift-tm T Δ t)
\end{code}
}
Weakening is a special case of \mintinline{Agda}|lift-tm|.
\begin{code}
wk : ∀ {Γ A B} → Γ ⊢ A → (B :: Γ) ⊢ A
wk = lift-tm _ ε
\end{code}
Finally, we define function composition for our internal language.
\begin{code}
infixl 10 _∘'_
_∘'_ : ∀ {Γ A B C}
→ Γ ⊢ (B ‘→’ C)
→ Γ ⊢ (A ‘→’ B)
→ Γ ⊢ (A ‘→’ C)
f ∘' g = ‘λ’ (wk f ‘’ₐ (wk g ‘’ₐ var top))
\end{code}
Now we are ready to prove that FairBot cooperates with itself.
Sadly, our type system isn't expressive enough to give a general type of bots, but we can still prove things about the interactions of particular bots if we substitute their types by hand.
For example, we can state the desired theorem (that FairBot cooperates with itself) as:
\begin{code}
distf : ∀ {Γ Δ A B}
→ Γ ⊢ (Δ ‘⊢’ A ‘→’ B)
→ Γ ⊢ (Δ ‘⊢’ A) ‘→’ (Δ ‘⊢’ B)
distf bf = ‘λ’ (dist (wk bf) (var top))
evf : ∀ {Γ Δ A}
→ Γ ⊢ (Δ ‘⊢’ A) ‘→’ (Δ ‘⊢’ (Δ ‘⊢’ A))
evf = ‘λ’ (repr (var top))
fb-fb-cooperate : ∀ {Γ A B}
→ Γ ⊢ (Γ ‘⊢’ A) ‘→’ B
→ Γ ⊢(Γ ‘⊢’ B) ‘→’ A
→ Γ ⊢ (A ‘×’ B)
fb-fb-cooperate a b
= lӧb (b ∘' distf ⌜ a ⌝ ∘' evf)
, lӧb (a ∘' distf ⌜ b ⌝ ∘' evf)
\end{code}
We can also state the theorem in a more familiar form with a couple abbreviations
\begin{code}
‘□’ = _‘⊢’_ ε
□ = _⊢_ ε
fb-fb-cooperate' : ∀ {A B}
→ □ (‘□’ A ‘→’ B)
→ □ (‘□’ B ‘→’ A)
→ □ (A ‘×’ B)
fb-fb-cooperate' = fb-fb-cooperate
\end{code}
In the file \texttt{fair-bot-self-cooperates.lagda} in the artifact, we show all the meta-theoretic properties we had before: soundness, inhabitedness, and incompleteness.
\AgdaHide{
We can show inhabitedness immediately in several different ways. We'll take the easiest one.
\begin{code}
inhabited : Σ Type (λ T → ε ⊢ T)
inhabited = ‘⊤’ , <>
\end{code}
We now prove soundness and incompleteness of this system,
and give it a semantic model via an interpretation function.
First, we'll first need to give the standard interpretation.
Again, the simplicity of our system makes our lives easier.
We define the interpreter for types as follows:
\begin{code}
⟦_⟧ᵀ : Type → Set
⟦ Δ ‘⊢’ T ⟧ᵀ = Δ ⊢ T
⟦ A ‘→’ B ⟧ᵀ = ⟦ A ⟧ᵀ → ⟦ B ⟧ᵀ
⟦ A ‘×’ B ⟧ᵀ = ⟦ A ⟧ᵀ × ⟦ B ⟧ᵀ
⟦ ‘⊥’ ⟧ᵀ = ⊥
⟦ ‘⊤’ ⟧ᵀ = ⊤
\end{code}
The interpreter for contexts is simplified - we only need simple products to interpret simple contexts.
\begin{code}
⟦_⟧ᶜ : Context → Set
⟦ ε ⟧ᶜ = ⊤
⟦ x :: Γ ⟧ᶜ = ⟦ Γ ⟧ᶜ × ⟦ x ⟧ᵀ
\end{code}
We can then interpret variables in any interpretable context.
\begin{code}
⟦_⟧v : ∀ {Γ A} → A ∈ Γ → ⟦ Γ ⟧ᶜ → ⟦ A ⟧ᵀ
⟦ top ⟧v = snd
⟦ pop v ⟧v = ⟦ v ⟧v ∘ fst
\end{code}
And now we can interpret terms.
\begin{code}
⟦_⟧ᵗ : ∀ {Γ A} → Γ ⊢ A → ⟦ Γ ⟧ᶜ → ⟦ A ⟧ᵀ
⟦ var v ⟧ᵗ = ⟦ v ⟧v
⟦ <> ⟧ᵗ = ᵏ _
⟦ a , b ⟧ᵗ = ᵏ _,_ ˢ ⟦ a ⟧ᵗ ˢ ⟦ b ⟧ᵗ
⟦ ‘⊥’-elim t ⟧ᵗ = ᵏ (λ ()) ˢ ⟦ t ⟧ᵗ
⟦ π₁ t ⟧ᵗ = ᵏ fst ˢ ⟦ t ⟧ᵗ
⟦ π₂ t ⟧ᵗ = ᵏ snd ˢ ⟦ t ⟧ᵗ
⟦ ‘λ’ b ⟧ᵗ = ^ ⟦ b ⟧ᵗ
⟦ f ‘’ₐ x ⟧ᵗ = ⟦ f ⟧ᵗ ˢ ⟦ x ⟧ᵗ
⟦ ⌜ t ⌝ ⟧ᵗ = ᵏ t
⟦ repr t ⟧ᵗ = ᵏ ⌜_⌝ ˢ ⟦ t ⟧ᵗ
⟦ dist f x ⟧ᵗ = ᵏ _‘’ₐ_ ˢ ⟦ f ⟧ᵗ ˢ ⟦ x ⟧ᵗ
⟦ Lӧb l ⟧ᵗ = ᵏ lӧb ˢ ⟦ l ⟧ᵗ
\end{code}
Which lets us prove all our sanity checks.
\begin{code}
‘¬’_ : Type → Type
‘¬’ T = T ‘→’ ‘⊥’
consistency : ¬ (□ ‘⊥’)
consistency f = ⟦ f ⟧ᵗ tt
incompleteness : ¬ (□ (‘¬’ ‘□’ ‘⊥’))
incompleteness t = ⟦ lӧb t ⟧ᵗ tt
soundness : ∀ {A} → □ A → ⟦ A ⟧ᵀ
soundness a = ⟦ a ⟧ᵗ tt
\end{code}
}