forked from hiromu/VoiceConversion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
131 lines (98 loc) · 4.61 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import glob
import numpy
import pylab
import sys
import matplotlib.patches
import sklearn.cross_validation
import sklearn.svm
from stf import STF
from mfcc import MFCC
def delta(data, frame = 5):
assert frame % 2 == 1
shift = frame / 2
x = numpy.array([(1, i) for i in xrange(frame)])
data = numpy.concatenate(([data[0]] * shift, data, [data[-1]] * shift))
delta = numpy.array([])
for i in xrange(shift, len(data) - shift):
solution, residuals, rank, s = numpy.linalg.lstsq(x, data[i - shift: i + shift + 1])
delta = numpy.append(delta, solution[1])
return delta[shift: -shift]
def analysis(stf_files):
stf = STF()
targets = ['f0', 'f0_delta', 'ap_fc', 'ap_alpha']
variables = locals()
for target in targets:
variables[target] = [numpy.array([]) for i in xrange(3)]
mfcc_data = None
for stf_file in stf_files:
stf.loadfile(stf_file)
voice = (stf.F0 != 0)
mfcc = MFCC(stf.SPEC.shape[1] * 2, stf.frequency)
intervals = []
past = False
for i in xrange(len(voice)):
if past and not voice[i]:
intervals[-1] = (intervals[-1][0], i)
past = False
elif not past and voice[i]:
intervals.append((i, -1))
past = True
if intervals[-1][1] == -1:
intervals[-1] = (intervals[-1][0], len(voice))
for interval in intervals:
if interval[1] - interval[0] < 5:
continue
f0_data = stf.F0[interval[0]: interval[1]]
f0_delta_data = delta(f0_data)
ap_fc_data = stf.APSG[interval[0]: interval[1], 0] * stf.APSG[interval[0]: interval[1], 1] * -1
ap_alpha_data = stf.APSG[interval[0]: interval[1], 0]
variables = locals()
for name in targets:
variables[name][0] = numpy.append(variables[name][0], variables[name + '_data'][:5])
variables[name][1] = numpy.append(variables[name][1], variables[name + '_data'])
variables[name][2] = numpy.append(variables[name][2], variables[name + '_data'][-5:])
mfcc_data_interval = numpy.array([mfcc.mfcc(spec) for spec in stf.SPEC[interval[0]: interval[1]]])
mfcc_data_interval = numpy.hstack([mfcc_data_interval, mfcc.delta(mfcc_data_interval)])
if mfcc_data is None:
mfcc_data = [mfcc_data_interval, mfcc_data_interval[:5], mfcc_data_interval[-5:]]
else:
mfcc_data[0] = numpy.vstack((mfcc_data[0], mfcc_data_interval))
mfcc_data[1] = numpy.vstack((mfcc_data[1], mfcc_data_interval[:5]))
mfcc_data[2] = numpy.vstack((mfcc_data[2], mfcc_data_interval[-5:]))
variables = locals()
return [[x.mean() for x in variables[target]] for target in targets], numpy.array(mfcc_data)
if __name__ == '__main__':
if len(sys.argv) < 3:
print 'Usage: %s [base_dir] [num]' % sys.argv[0]
base_dir = sys.argv[1]
num = int(sys.argv[2])
results, mfcc_data = zip(*[analysis(glob.glob(base_dir % i)) for i in xrange(1, num + 1)])
mfcc_data = zip(*mfcc_data)
for i in xrange(3):
data = numpy.vstack([mfcc_data[i][j] for j in xrange(3)])
label = numpy.concatenate([numpy.array([j for k in xrange(len(mfcc_data[i][j]))]) for j in xrange(3)])
skf = sklearn.cross_validation.StratifiedKFold(label, n_folds = 5)
train_index, test_index = next(iter(skf))
train_data, train_label = data[train_index], label[train_index]
test_data, test_label = data[test_index], label[test_index]
svc = sklearn.svm.SVC()
svc.fit(train_data, train_label)
test_pred = svc.predict(test_data)
accuracy = numpy.mean(test_label.ravel() == test_pred.ravel()) * 100
print accuracy
color = ['#57B196', '#FFD25A', '#FF837B']
hatch = ['.', '/', 'x']
legend = [u'先頭', u'全体', u'末尾']
label = [u'F0 (Hz)', u'ΔF0', u'Aperiodic component (Hz)', u'Aperiodic component (exponent)']
location = ['upper right', 'lower left', 'upper left', 'upper left']
for i in xrange(4):
for j in xrange(3):
for k in xrange(3):
pylab.bar(j * 4 + k + 0.5, results[j][i][k], edgecolor = '#362F3C', facecolor = color[j], hatch = hatch[k])
pylab.xticks(xrange(2, 11, 4), ['A', 'B', 'C'])
pylab.ylabel(label[i])
patches = [matplotlib.patches.Patch(hatch = hatch[x], edgecolor = 'k', facecolor = 'w') for x in xrange(3)]
pylab.legend(patches, legend, loc = location[i])
pylab.show()