-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinteraction_llm_rl.py
247 lines (194 loc) · 8.51 KB
/
interaction_llm_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import warnings
warnings.filterwarnings("ignore")
import sys
sys.path.append("../FinRL-Library")
import os
import argparse
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3 import A2C
from finrl.plot import get_baseline, backtest_stats
from finrl.meta.preprocessor.yahoodownloader import YahooDownloader
from finrl.meta.preprocessor.preprocessors import FeatureEngineer, data_split
from env.marginEnv_v1 import MarginTradingEnv
from env.agent import DRLAgent
from finrl.main import check_and_make_directories
from finrl.config import (
INDICATORS,
)
from utils import *
# set up
seed = 0
set_random_seed(seed)
parser = argparse.ArgumentParser(description='Interaction of LLM trend score with RL')
parser.add_argument('--data',type = str, default = 'firm_news')
parser.add_argument('--llm',type = str, default = 'gpt-4o-2024-05-13')
args = parser.parse_args()
TRAINED_MODEL_DIR = 'models'
RESULTS_DIR = 'results/test'
check_and_make_directories([TRAINED_MODEL_DIR, RESULTS_DIR])
########################### Data processing
print("==============Process price data===========")
DOW_30_TICKER = ['AAPL', 'AMGN', 'AXP', 'BA', 'CAT', 'CSCO', 'CVX', 'DIS', 'GS',
'HD', 'HON', 'IBM', 'INTC', 'JNJ', 'JPM', 'KO', 'MCD', 'MMM',
'MRK', 'MSFT', 'NKE', 'PG', 'TRV', 'UNH', 'VZ', 'WBA', 'WMT']
print(DOW_30_TICKER)
TRAIN_START_DATE = '2009-01-01'
TRAIN_END_DATE = '2018-12-31'
TEST_START_DATE = '2019-01-01'
TEST_END_DATE = '2020-04-30'
TRADE_START_DATE = '2020-05-01'
TRADE_END_DATE = '2024-04-01'
os.makedirs('./data', exist_ok=True)
if os.path.exists('./data/price_data.csv'):
processed = pd.read_csv('./data/price_data.csv',index_col=0)
else:
df = YahooDownloader(start_date = TRAIN_START_DATE,
end_date = TRADE_END_DATE,
ticker_list = DOW_30_TICKER).fetch_data() # 97013,8
df.sort_values(['date','tic']).head()
fe = FeatureEngineer(use_technical_indicator=True,
tech_indicator_list = INDICATORS,
use_vix=True,
use_turbulence=True,
user_defined_feature = False)
processed = fe.preprocess_data(df)
processed = processed.copy()
processed = processed.fillna(0)
processed = processed.replace(np.inf,0)
processed.to_csv('./data/price_data.csv')
train = data_split(processed, TRAIN_START_DATE,TRAIN_END_DATE)
test = data_split(processed, TEST_START_DATE,TEST_END_DATE)
trade = data_split(processed, TRADE_START_DATE,TRADE_END_DATE)
# read prediction from LLMs
ratio = pd.read_csv(f"data/output/{args.data}_{args.llm}_greedy.csv").Prediction
# majority voting for 5 runs
# ratio = ratio.loc[:,['Prediction1', 'Prediction2', 'Prediction3', 'Prediction4',
# 'Prediction5']].mode(axis=1)
# if ratio.shape[1]==1:
# ratio = ratio[0]
# elif ratio.shape[1]==2:
# ratio = np.where((~pd.isna(ratio[1]))&(abs(ratio[1])<abs(ratio[0])),ratio[1],ratio[0])
# elif ratio.shape[1]>2:
# print('too much mode')
# exit()
########################### Build model
stock_dimension = len(train.tic.unique())
state_space = 2*3 + 2*stock_dimension + len(INDICATORS)*stock_dimension # cash, long, short, 30 close, 30 holding shares, 30 tech
print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}")
buy_cost_list = sell_cost_list = [0.001] * stock_dimension
num_stock_shares = [0] * stock_dimension
env_kwargs = {
"hmax": 100,
"initial_amount": 1000000,
"num_stock_shares": num_stock_shares,
"buy_cost_pct": buy_cost_list,
"sell_cost_pct": sell_cost_list,
"state_space": state_space,
"stock_dim": stock_dimension,
"tech_indicator_list": INDICATORS,
"action_space": 2*stock_dimension,
"reward_scaling": 1e-4,
'penalty_sharpe': 0.05
}
############################## Trade without LLM
trained_a2c = A2C.load(TRAINED_MODEL_DIR+'/agent_a2c.pth')
print("==============Trade without LLM interaction===========")
e_trade_gym = MarginTradingEnv(df = trade, turbulence_threshold = 70,risk_indicator_col='vix', **env_kwargs)
trade_account_value_a2c, trade_actions_a2c, trade_state_a2c = DRLAgent.DRL_prediction(
model=trained_a2c,
environment = e_trade_gym)
trade_actions_a2c.to_csv(RESULTS_DIR+"/trade_actions.csv")
trade_state_a2c.to_csv(RESULTS_DIR+"/trade_state.csv")
perf_stats = pd.DataFrame(backtest_stats(account_value=trade_account_value_a2c))
perf_stats.columns = ['wo_llm']
trade_result_a2c = trade_account_value_a2c.set_index(trade_account_value_a2c.columns[0])
equity_ratio = pd.DataFrame(trade_state_a2c.long_equity / (trade_state_a2c.long_equity + trade_state_a2c.short_equity))
equity_ratio.columns = ['wo_llm']
############################## Trade with LLM
print("==============Trade with LLM interaction===========")
processed_date = list(processed.date.unique())
scale = 0.1 # 10% of changes
freq = 6 # 6 months
ratio_freq = int(freq/3)
ratio_list = list(ratio*scale)[::ratio_freq]
dates= pd.date_range(TRADE_START_DATE, TRADE_END_DATE , freq='1M')-pd.offsets.MonthBegin(1)
dates = [str(i.date()) for i in dates]
dates = dates[::freq] + [TRADE_END_DATE]
trade_account_value_a2c_llm, trade_actions_a2c_llm, trade_state_a2c_llm = pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
for i in range(1, len(dates)):
if i != len(dates) - 1:
data = data_split_include(processed, dates[i - 1], dates[i])
if dates[i] not in processed_date:
end_date = data.date.iloc[-1]
end_date = processed_date[processed_date.index(end_date) + 1]
data = data_split_include(processed, dates[i-1], end_date)
else:
data = data_split(processed, dates[i - 1], dates[i])
if i==1:
target = 0.5*(1+ratio_list[i])
# target = 0.5+ratio_list[i]
env_kwargs['long_short_ratio'] = target/(1-target)
kwargs = env_kwargs
else:
kwargs = {
"hmax": 100,
"initial": False,
"previous_state": state.tolist(),
"initial_amount": state[2]+state[5],
"num_stock_shares": num_stock_shares,
"buy_cost_pct": buy_cost_list,
"sell_cost_pct": sell_cost_list,
"state_space": state_space,
"stock_dim": stock_dimension,
"tech_indicator_list": INDICATORS,
"action_space": 2*stock_dimension,
"reward_scaling": 1e-4,
'penalty_sharpe': 0.05
}
e_trade_gym = MarginTradingEnv(df = data, turbulence_threshold = 70,risk_indicator_col='vix', **kwargs)
account_log, action_log, state_log = DRLAgent.DRL_prediction(
model=trained_a2c,
environment = e_trade_gym)
if i != len(dates)-1:
state, target_ratio = update_ratio(i, state_log.iloc[-1], ratio_list[i], stock_dimension, buy_cost_list, sell_cost_list)
state_log.iloc[-1] = state
account_log = account_log.iloc[:-1]
trade_account_value_a2c_llm = pd.concat([trade_account_value_a2c_llm, account_log])
trade_actions_a2c_llm = pd.concat([trade_actions_a2c_llm, action_log])
trade_state_a2c_llm = pd.concat([trade_state_a2c_llm, state_log])
perf_stats_llm = pd.DataFrame(backtest_stats(account_value=trade_account_value_a2c_llm))
perf_stats_llm.columns = ['llm']
perf_stats = pd.concat([perf_stats, perf_stats_llm], axis=1)
trade_actions_a2c_llm.to_csv(RESULTS_DIR + "/trade_actions_llm_" + str(freq) + ".csv")
trade_state_a2c_llm.to_csv(RESULTS_DIR + "/trade_state_llm_" + str(freq) + ".csv")
trade_account_value_a2c_llm.to_csv(RESULTS_DIR + "/trade_account_llm_" + str(freq) + ".csv")
print("==============Compare to DJIA===========")
dji_df = get_baseline(
ticker="^DJI",
start = TRADE_START_DATE,
end = TRADE_END_DATE)
df_dji = dji_df[["date", "close"]]
fst_day = df_dji["close"][0]
dji = pd.merge(
df_dji["date"],
df_dji["close"].div(fst_day).mul(1000000),
how="outer",
left_index=True,
right_index=True,
).set_index("date")
res = trade_account_value_a2c_llm.set_index(trade_account_value_a2c_llm.columns[0])
result = pd.DataFrame(
{
"wo_llm": trade_result_a2c["account_value"],
"w_llm": res["account_value"],
"dji": dji["close"]
}
)
result.to_csv(RESULTS_DIR + "/trade_result.csv")
perf_stats_dji = pd.DataFrame(backtest_stats(dji_df,'close'))
perf_stats_dji.columns = ['dji']
perf_stats = pd.concat([perf_stats_dji, perf_stats], axis=1)
perf_stats.to_csv(RESULTS_DIR+"/perf_stats.csv")
read_path = RESULTS_DIR + "/trade_result.csv"
save_path = RESULTS_DIR + "/equity.pdf"
plot_equity(read_path, save_path)