-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05_ROC-AUC_map.R
56 lines (40 loc) · 1.68 KB
/
05_ROC-AUC_map.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#----------------------------------------------------------------------------------------
# AUC ROC PER SEASON
# Author: Roberto O. Chavez
# Modifications: José A. Lastra.
# date: 2021.04.16
# Description: AUC-ROC as a performance measure for the binomial model for snow prob per SEASON
# Output is 1 band
#----------------------------------------------------------------------------------------
#libraries
library(ROCR)
library(raster)
library(lubridate)
library(rts)
library(rgdal)
library(parallel)
library(tidyverse)
rm(list=ls()) #will remove ALL objects
#-------------------------------------------------------------------------------------------------
# Inputs outputs
snow.path <- "bin_NDSI" #path to binary rasters
snowfl <- list.files(path=snow.path, pattern=glob2rx("mask*.tif"), full.names=T) #file list
snow.st <-stack(snowfl) #stack data
dates.table <- read_csv("landsat_Cleancollection_1984-2019.csv") #read dates table
dates_full <- dates.table$fechas #dates vector
# Subset data for your analysis. Skip if you want to use all dataset
ini <- as.Date('1984-01-01') #start date for analysis
fin <- as.Date('1990-12-31') #end date for analysis
s1 <- which(dates_full >= ini) %>% head(1) #creates start subset
s2 <- which(dates_full <= fin) %>% tail(1) #creates end subset
dates <- dates_full[s1:s2] # subset dates
st.p1 <- snow.st[[s1:s2]] # subset raster
#----------------------------------------------------------------------------------------
# Run the function
#load
source('02_SnowAucRocMap.R')
#outname and setup
oname <- "rasterStackAucROC.tif"
ddd <- dates
SnowAucRocMap(s = st.p1 , dates = ddd, nCluster = 3, outname = oname,
format = "GTiff", datatype = "INT4S")