-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgte.py
203 lines (180 loc) · 6.77 KB
/
gte.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# This file contains codes from vegaluisjose's model.py (https://github.com/vegaluisjose/mlx-rag),
# with additional VDB class implementation.
# Copyright (c) vegaluisjose
# Licensed under The Apache License 2.0 (https://github.com/vegaluisjose/mlx-rag/blob/main/LICENSE)
import json
import os
from typing import List, Optional
import datasets
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from huggingface_hub import snapshot_download
from pydantic import BaseModel
from transformers import BertTokenizer
PATH_GTE = 'models/gte'
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
last_hidden = mx.multiply(last_hidden_state, attention_mask[..., None])
return last_hidden.sum(axis=1) / attention_mask.sum(axis=1)[..., None]
class ModelConfig(BaseModel):
dim: int = 1024
num_attention_heads: int = 16
num_hidden_layers: int = 24
vocab_size: int = 30522
attention_probs_dropout_prob: float = 0.1
hidden_dropout_prob: float = 0.1
layer_norm_eps: float = 1e-12
max_position_embeddings: int = 512
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
layer_norm_eps: float = 1e-12,
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
self.linear2 = nn.Linear(mlp_dims, dims)
self.gelu = nn.GELU()
def __call__(self, x, mask):
attention_out = self.attention(x, x, x, mask)
add_and_norm = self.ln1(x + attention_out)
ff = self.linear1(add_and_norm)
ff_gelu = self.gelu(ff)
ff_out = self.linear2(ff_gelu)
x = self.ln2(ff_out + add_and_norm)
return x
class TransformerEncoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
def __call__(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return x
class BertEmbeddings(nn.Module):
def __init__(self, config: ModelConfig):
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.token_type_embeddings = nn.Embedding(2, config.dim)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.dim
)
self.norm = nn.LayerNorm(config.dim, eps=config.layer_norm_eps)
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
words = self.word_embeddings(input_ids)
position = self.position_embeddings(
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
)
token_types = self.token_type_embeddings(token_type_ids)
embeddings = position + words + token_types
return self.norm(embeddings)
class Bert(nn.Module):
def __init__(self, config: ModelConfig):
self.embeddings = BertEmbeddings(config)
self.encoder = TransformerEncoder(
num_layers=config.num_hidden_layers,
dims=config.dim,
num_heads=config.num_attention_heads,
)
self.pooler = nn.Linear(config.dim, config.dim)
def __call__(
self,
input_ids: mx.array,
token_type_ids: mx.array,
attention_mask: mx.array = None,
) -> tuple[mx.array, mx.array]:
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
class GteModel:
def __init__(self) -> None:
model_path = PATH_GTE
if not os.path.exists(model_path):
snapshot_download(repo_id="vegaluisjose/mlx-rag", local_dir=model_path)
snapshot_download(repo_id="thenlper/gte-large", allow_patterns=["vocab.txt", "*.json"], local_dir=model_path)
with open(f"{model_path}/config.json") as f:
model_config = ModelConfig(**json.load(f))
self.model = Bert(model_config)
self.model.load_weights(f"{model_path}/model.npz")
self.tokenizer = BertTokenizer.from_pretrained(model_path)
def __call__(self, input_text: List[str]) -> mx.array:
tokens = self.tokenizer(input_text, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}
last_hidden_state, _ = self.model(**tokens)
embeddings = average_pool(
last_hidden_state, tokens["attention_mask"].astype(mx.float32)
)
embeddings = embeddings / mx.linalg.norm(embeddings, ord=2, axis=1)[..., None]
return embeddings
_list_api = [
"""Text to image
```python
from gradio_client import Client
client = Client("stabilityai/stable-diffusion-3-medium")
result = client.predict(
prompt="{prompt}",
negative_prompt="ugly, low quality",
seed=0,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=5,
num_inference_steps=28,
api_name="/infer"
)
print('<|api_output|>'+result[0])
```
""",
"""Text to speech
```python
from gradio_client import Client
client = Client("parler-tts/parler_tts_mini")
result = client.predict(
text="{prompt}",
description="",
api_name="/gen_tts"
)
print('<|api_output|>'+result)
```
""",
"""Transcribe youtube video
```python
from gradio_client import Client
client = Client("rajesh1729/youtube-video-transcription-with-whisper")
result = client.predict(
url="{prompt}",
api_name="/get_summary"
)
print('<|api_output|>'+result)
```
""",
]
class VDB:
def __init__(self, list_api=None, n_line=1):
self.embed = GteModel()
if list_api is None:
self.list_api = _list_api
list_src = _list_api if n_line < 0 else ['\n'.join(s.split('\n')[:n_line]) for s in _list_api]
self.list_embed = mx.concatenate([self.embed(i) for i in list_src])
else:
self.list_api = list_api['phi']
self.list_embed = mx.array(np.squeeze(list_api.with_format(type='numpy', columns=['gte'])['gte']))
def __call__(self, text, n_topk=1):
query_embed = self.embed(text)
scores = mx.matmul(query_embed, self.list_embed.T)
list_idx = mx.argsort(scores)[:,:-1-n_topk:-1].tolist()
return [[self.list_api[j] for j in i] for i in list_idx]