Skip to content

Latest commit

 

History

History
79 lines (73 loc) · 2.26 KB

Set Theory Running Notes.md

File metadata and controls

79 lines (73 loc) · 2.26 KB

Foundations

  • Formal system in math?
    • Definition
    • Components
    • Needs
  • What is the difference between a definition and a proposition in a formal language?
  • Difference between semantics and syntax?

Set Theory

History
  • How were sets used in mathematical language before cantor and introduction of infinite sets?
  • What were the paradoxes caused by considering infinite sets to be worth studying?
    • Difference between paradoxes caused by real vs virtual infinity?
Defining every class/sets
  • Which Objects can be defined by sets
    • Ordered N-Tuples
      • Groups/Fields/Rings (Ordered Pair of a set and a binary operator relation)
      • Sequences, Real Numbers, Infinite Sums, Infinite Radicals and Fractions
    • Graphs
      • Functions, Relations
    • Power Sets
      • Ways of choosing from a bigger set (combinatorics)
  • Which objects cant be defined by sets/can be defined by proper class?
    • Class of all sets/classes
    • Class of all groups
    • Class of all vector spaces
    • Surreal numbers
    • Ordinal Numbers
Axiomatic Set Theory Outline
  • Primitive Notions
    • Set/Class for NBG
      • What is the difference between Set, Class, Proper Class
    • Elementhood
  • Axioms
    • Extentionality
    • Specification (for )
    • Subclass
    • Pair
    • Power Set
    • Union
    • Regularity (restrict to well-founded classes only)
    • Replacement (Mapping from set gives set)
  • Definitions:
    • Equality (some times treated as a primitive)
      • Difference between extensionality axiom vs equality definition vs equality in logic
    • Subset
    • Union/Intersection
    • Ordered N-tuple/pair
    • Cartesian Product/Graph
    • Generalized Union/Intersection
Types of Classes
  • What are sets?
  • What are classes?
  • What are proper classes?
  • What are urelements?
  • Can cartesian product of two sets be a proper class?
    • Do same for other types of big sets:
      • Union/Infinite Union
      • Mapping?
      • Power set?
Extensionality
  • Difference between extensionality and intensionality?
  • Difference between axiom of extension vs equality as a primitive
Specification
  • What are syntactic paradoxes?
  • What are semantic paradoxes?
  • How does ZFC deal with Russel's Paradox?
  • How does NBG deal with Russel's Paradox?
Replacement
Building Sets/Classes
  • NBG comprehension: Build set based on property