-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinding_random_states_and_actions.py
40 lines (33 loc) · 1.39 KB
/
finding_random_states_and_actions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gym
import envs
import numpy as np
from env.Helicopter import Helicopter
from env.controller import Controller
# my_data = np.genfromtxt('best_13_action_reward.csv', delimiter=',')
class state_finder:
def __init__(self):
self.my_heli = Helicopter()
self.my_contr = Controller()
self.ENV_ID = "CustomEnv-v0"
# ENV_ID = "CartPole-v0"
self.env = gym.make(self.ENV_ID)
self.env.current_states = self.env.reset()
def get_action(self, current_states, sl_action=[1, 10, 10, 5, 5, 1, 1, 2, 2, 1, 1, 1, 1]):
action = self.my_contr.Controller_model(current_states, self.env.dt * self.env.counter, sl_action)
return action
# obs = [0,0,0,0,0,0,0,0]
# [1, 10, 10, 5, 5, 1, 1, 2, 2, 1, 1, 1, 1]
# for i in range(25000):
# # obs, reward, done, _ = env.step([my_data[i, 30],my_data[i, 31], my_data[i, 32], my_data[i, 33]])
# action, reward = my_heli.Controller_model(env.current_states, [1, 10, 10, 5, 5, 1, 1, 2, 2, 1, 1, 1, 1],
# env.dt * env.counter)
# print(action)
# obs, reward, done, _ = env.step(action.reshape(4))
# if done:
# print("done")
# env.reset()
# break
if __name__ == "__main__":
abc = state_finder()
random_states = np.random.uniform(-0.1, 0.1, 16)
actions = abc.get_action(random_states)