-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
56 lines (41 loc) · 1.47 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import dotenv
import hydra
from omegaconf import DictConfig
def set_personal_dir_from_hostname():
# for nlp cluster
from pathlib import Path
import platform
import os
import pwd
username = pwd.getpwuid(os.getuid())[0]
machine_name = platform.node().split(".")[0]
local_dir = Path(f"/{machine_name}")
for scr in ["scr0", "scr1", "scr", "scr2"]:
personal_dir = local_dir / scr / username
if personal_dir.exists():
break
os.environ["PERSONAL_DIR"] = str(personal_dir)
return
# set_personal_dir_from_hostname()
# load environment variables from `.env` file if it exists
dotenv.load_dotenv(override=True)
@hydra.main(config_path="configs/", config_name="config.yaml")
def main(config: DictConfig):
# Imports should be nested inside @hydra.main to optimize tab completion
# Read more here: https://github.com/facebookresearch/hydra/issues/934
from src.train import train
from src.utils import template_utils
# A couple of optional utilities:
# - disabling python warnings
# - disabling lightning logs
# - easier access to debug mode
# - forcing debug friendly configuration
# You can safely get rid of this line if you don't want those
template_utils.extras(config)
# Pretty print config using Rich library
if config.get("print_config"):
template_utils.print_config(config, resolve=True)
# Train model
return train(config)
if __name__ == "__main__":
main()