-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtorch.rs
288 lines (260 loc) · 10.4 KB
/
torch.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//! This is simple support for PyTorch files (.pth)
//! It really won't be able to handle anything fancy.
//! If your Torch file is just a flat dict without any
//! exotic types, you have a chance of this working.
//!
//! Example result:
//!
//! ```plaintext
//! RepugnantTorchTensors(
//! [
//! RepugnantTorchTensor {
//! name: "emb.weight",
//! device: "cuda:0",
//! tensor_type: BFloat16,
//! storage: "archive/data/0",
//! storage_len: 430348288,
//! storage_offset: 327378944,
//! absolute_offset: 327445248,
//! shape: [1024, 50277],
//! stride: [1, 1024],
//! requires_grad: false,
//! },
//! RepugnantTorchTensor {
//! name: "blocks.0.ln1.weight",
//! device: "cuda:0",
//! tensor_type: BFloat16,
//! storage: "archive/data/0",
//! storage_len: 430348288,
//! storage_offset: 13639680,
//! absolute_offset: 13705984,
//! shape: [1024],
//! stride: [1],
//! requires_grad: false,
//! },
//! ]
//! ```
//!
//! If you mmap the whole file, you can access the tensors
//! starting at the absolute offset. You will need to calculate
//! the length from the shape and type.
//! Alternatively, you can open the Torch file as a ZIP and
//! read it the ld fashioned way using `storage` as the ZIP
//! member filename.
use std::{borrow::Cow, fs::File, io::Read, path::Path, str::FromStr};
use anyhow::{anyhow, bail, ensure, Ok, Result};
use crate::{ops::PickleOp, *};
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum TensorType {
Float64,
Float32,
Float16,
BFloat16,
Int64,
Int32,
Int16,
Int8,
UInt8,
Unknown(String),
}
impl TensorType {
/// Get the item size for this tensor type. However,
/// the type of Unknown tensor types is... well,
/// unknown. So you get 0 back there.
pub fn size(&self) -> usize {
match self {
TensorType::Float64 => 8,
TensorType::Float32 => 4,
TensorType::Float16 => 2,
TensorType::BFloat16 => 2,
TensorType::Int64 => 8,
TensorType::Int32 => 4,
TensorType::Int16 => 2,
TensorType::Int8 => 1,
TensorType::UInt8 => 1,
TensorType::Unknown(_) => 0,
}
}
}
impl FromStr for TensorType {
type Err = std::convert::Infallible;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let s = s.strip_suffix("Storage").unwrap_or(s).to_ascii_lowercase();
Result::Ok(match s.as_str() {
"float64" | "double" => Self::Float64,
"float32" | "float" => Self::Float32,
"float16" | "half" => Self::Float16,
"bfloat16" => Self::BFloat16,
"int64" | "long" => Self::Int64,
"int32" | "int" => Self::Int32,
"int16" | "short" => Self::Int16,
"int8" | "char" => Self::Int8,
"uint8" | "byte" => Self::UInt8,
_ => Self::Unknown(s),
})
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RepugnantTorchTensor {
/// Tensor name.
pub name: String,
/// Device
pub device: String,
/// Type of tensor.
pub tensor_type: TensorType,
/// The filename in the ZIP which has storage for this tensor.
pub storage: String,
/// Total length (in bytes) for the entire storage item.
/// Note that multiple tensors can point to different ranges
/// of the item. Or maybe even the same ranges.
pub storage_len: u64,
/// Offset into the storage file where this tensor's data starts.
/// Torch files don't have ZIP compression enabled so you can
/// use this for mmaping the whole file and extracting the tensor data.
/// However bear in mind it won't necessarily be aligned.
pub storage_offset: u64,
/// Absolute offset into the Torch (zip) file.
pub absolute_offset: u64,
/// The tensor shape (dimensions).
pub shape: Vec<usize>,
/// The tensor stride.
pub stride: Vec<usize>,
/// Whether the tensor requires gradients enabled.
pub requires_grad: bool,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RepugnantTorchTensors(pub Vec<RepugnantTorchTensor>);
impl IntoIterator for RepugnantTorchTensors {
type Item = RepugnantTorchTensor;
type IntoIter = std::vec::IntoIter<RepugnantTorchTensor>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl RepugnantTorchTensors {
pub fn new_from_file<P: AsRef<Path>>(filename: P) -> Result<Self> {
let mut zp = zip::ZipArchive::new(File::open(filename)?)?;
let datafn = zp
.file_names()
.find(|s| s.ends_with("/data.pkl"))
.map(str::to_owned)
.ok_or_else(|| anyhow!("Could not find data.pkl in archive"))?;
let (pfx, _) = datafn.rsplit_once('/').unwrap();
let mut zf = zp.by_name(&datafn)?;
let mut buf = Vec::with_capacity(zf.size() as usize);
let _ = zf.read_to_end(&mut buf)?;
drop(zf);
let (_remain, ops) = parse_ops::<nom::error::VerboseError<&[u8]>>(&buf)
.map_err(|e| anyhow!("Parse error: {:?}", e))?;
// Why _wouldn't_ there be random garbage left after parsing the pickle?
// ensure!(!remain.is_empty(), "Unexpected remaining data in pickle");
let (vals, _memo) = evaluate(&ops, true)?;
let val = match vals.as_slice() {
[Value::Build(a, _), ..] => a.as_ref(),
_ => bail!("Unexpected toplevel type"),
};
// Presumably this is usually going to be an OrderedDict, but maybe
// it can also be a plain old Dict.
let val = match val {
Value::Global(g, seq) => match g.as_ref() {
// Dereffing both the Box and Cow here.
Value::Raw(rv) if **rv == PickleOp::GLOBAL("collections", "OrderedDict") => {
match seq.as_slice() {
[_, Value::Seq(SequenceType::Tuple, seq2), ..] => seq2,
_ => bail!("Unexpected value in collections.OrderedDict"),
}
}
_ => bail!("Unexpected type in toplevel Global"),
},
Value::Seq(SequenceType::Dict, seq) => seq,
_ => bail!("Unexpected type in Build"),
};
let mut tensors = Vec::with_capacity(16);
for di in val.iter() {
let (k, v) = match di {
Value::Seq(SequenceType::Tuple, seq) if seq.len() == 2 => (&seq[0], &seq[1]),
_ => bail!("Could not get key/value for dictionary item"),
};
let k = if let Value::String(s) = k {
*s
} else {
bail!("Dictionary key is not a string");
};
let v = match v {
Value::Global(g, seq)
if g.as_ref()
== &Value::Raw(Cow::Owned(PickleOp::GLOBAL(
"torch._utils",
"_rebuild_tensor_v2",
))) =>
{
seq
}
// It's possible to jam random values into the Dict, so
// since it's not a tensor we just ignore it here.
_ => continue,
};
// println!("\nKey: {k:?}\n{v:?}");
let (pidval, offs, shape, stride, grad) = match v.as_slice() {
[Value::Seq(SequenceType::Tuple, seq)] => match seq.as_slice() {
[Value::PersId(pidval), Value::Int(offs), Value::Seq(SequenceType::Tuple, shape), Value::Seq(SequenceType::Tuple, stride), Value::Bool(grad), ..] => {
(pidval.as_ref(), *offs as u64, shape, stride, *grad)
}
_ => bail!("Unexpected value in call to torch._utils._rebuild_tensor_v2"),
},
_ => bail!("Unexpected type in call to torch._utils._rebuild_tensor_v2"),
};
// println!("PID: {pidval:?}");
let fixdim = |v: &[Value]| {
v.iter()
.map(|x| match x {
Value::Int(n) => Ok(*n as usize),
_ => bail!("Bad value for shape/stride item"),
})
.collect::<Result<Vec<_>>>()
};
let shape = fixdim(shape)?;
let stride = fixdim(stride)?;
// println!("Tensor: shape={shape:?}, stride={stride:?}, offs={offs}, grad={grad:?}");
let (stype, sfile, sdev, slen) = match pidval {
Value::Seq(SequenceType::Tuple, seq) => match seq.as_slice() {
[Value::String("storage"), Value::Raw(op), Value::String(sfile), Value::String(sdev), Value::Int(slen)] => {
match &**op {
PickleOp::GLOBAL("torch", styp) if styp.ends_with("Storage") => {
(&styp[..styp.len() - 7], *sfile, *sdev, *slen as u64)
}
_ => bail!("Unexpected storage type part of persistant ID"),
}
}
_ => bail!("Unexpected sequence in persistant ID"),
},
_ => bail!("Unexpected value for persistant ID"),
};
let stype: TensorType = stype
.parse()
.expect("Impossible: Parsing tensor type failed");
let sfile = format!("{pfx}/data/{sfile}");
// println!("PID: file={sfile}, len={slen}, type={stype:?}, dev={sdev}");
// This actually shouldn't ever fail.
let zf = zp.by_name(&sfile)?;
ensure!(
zf.compression() == zip::CompressionMethod::STORE,
"Can't handle compressed files",
);
let offs = offs * stype.size() as u64;
tensors.push(RepugnantTorchTensor {
name: k.to_string(),
device: sdev.to_string(),
tensor_type: stype,
storage: sfile,
storage_len: slen,
storage_offset: offs,
absolute_offset: zf.data_start() + offs,
shape,
stride,
requires_grad: grad,
})
}
Ok(Self(tensors))
}
}