-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
152 lines (131 loc) · 4.96 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Source: https://drive.google.com/drive/folders/0B7EVK8r0v71pTUZsaXdaSnZBZzg?resourcekey=0-rJlzl934LzC-Xp28GeIBzQ
# References:
# https://github.com/KimRass/DCGAN/blob/main/celeba.py
from torch.utils.data import Dataset, DataLoader, DistributedSampler
import torchvision.transforms as T
from torchvision.datasets import CelebA
import albumentations as A
from albumentations.pytorch import ToTensorV2
import cv2
from PIL import Image
import numpy as np
from pathlib import Path
class CelebADS(Dataset):
def __init__(self, data_dir, split, img_size, hflip):
self.ds = CelebA(root=data_dir, split=split, download=True)
transforms = [
A.HorizontalFlip(p=0.5),
A.SmallestMaxSize(max_size=img_size, interpolation=cv2.INTER_AREA),
A.CenterCrop(height=img_size, width=img_size),
# "We assume that image data consists of integers in $\{0, 1, \ldots, 255\}$ scaled linearly
# to $[-1, 1]$. This ensures that the neural network reverse process operates
# on consistently scaled inputs starting from the standard normal prior $p(x_{T})$."
A.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
ToTensorV2(),
]
if not hflip:
transforms = transforms[1:]
self.transform = A.Compose(transforms)
def __len__(self):
return len(self.ds)
def __getitem__(self, idx):
image, _ = self.ds[idx]
return self.transform(image=np.array(image))["image"]
def get_train_and_val_dls(data_dir, img_size, batch_size, num_workers):
train_ds = CelebADS(data_dir=data_dir, split="train", img_size=img_size, hflip=True)
val_ds = CelebADS(data_dir=data_dir, split="valid", img_size=img_size, hflip=False)
train_dl = DataLoader(
train_ds,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
drop_last=True,
persistent_workers=True,
num_workers=num_workers,
)
val_dl = DataLoader(
val_ds,
batch_size=batch_size,
shuffle=False,
pin_memory=True,
drop_last=True,
persistent_workers=True,
num_workers=num_workers,
)
return train_dl, val_dl
def get_test_dl(data_dir, img_size, batch_size, num_workers):
test_ds = CelebADS(data_dir=data_dir, split="test", img_size=img_size, hflip=False)
return DataLoader(
test_ds,
batch_size=batch_size,
shuffle=False,
pin_memory=False,
drop_last=True,
persistent_workers=False,
num_workers=num_workers,
)
def get_train_and_val_dls_ddp(
data_dir, img_size, batch_size, num_workers, rank, world_size,
):
train_ds = CelebADS(data_dir=data_dir, split="train", img_size=img_size, hflip=True)
val_ds = CelebADS(data_dir=data_dir, split="valid", img_size=img_size, hflip=False)
train_sampler = DistributedSampler(
train_ds, num_replicas=world_size, rank=rank, shuffle=True,
)
val_sampler = DistributedSampler(
val_ds, num_replicas=world_size, rank=rank, shuffle=True,
)
train_dl = DataLoader(
train_ds,
batch_size=batch_size,
sampler=train_sampler,
pin_memory=True,
drop_last=True,
persistent_workers=True,
num_workers=num_workers,
)
val_dl = DataLoader(
val_ds,
batch_size=batch_size,
sampler=val_sampler,
pin_memory=True,
drop_last=True,
persistent_workers=True,
num_workers=num_workers,
)
return train_dl, val_dl
def get_test_dl(data_dir, img_size, batch_size, num_workers):
test_ds = CelebADS(data_dir=data_dir, split="test", img_size=img_size, hflip=False)
return DataLoader(
test_ds,
batch_size=batch_size,
shuffle=False,
pin_memory=False,
drop_last=True,
persistent_workers=False,
num_workers=num_workers,
)
class ImageGridDataset(Dataset):
def __init__(self, data_dir, img_size, n_cells=100, padding=1):
super().__init__()
self.img_paths = sorted(list(Path(data_dir).glob("**/*.jpg")))
self.img_size = img_size
self.padding = padding
self.n_cells = n_cells
self.transformer = T.Compose(
[T.ToTensor(), T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))],
)
def __len__(self):
return len(self.img_paths) * self.n_cells
def _idx_to_dimension(self, idx):
return self.padding * (idx + 1) + self.img_size * idx
def __getitem__(self, idx):
image = Image.open(self.img_paths[idx // self.n_cells]).convert("RGB")
image = self.transformer(image)
row_idx = (idx % self.n_cells) // int((self.n_cells ** 0.5))
col_idx = (idx % self.n_cells) % int((self.n_cells ** 0.5))
return image[
:,
self._idx_to_dimension(row_idx): self._idx_to_dimension(row_idx) + self.img_size,
self._idx_to_dimension(col_idx): self._idx_to_dimension(col_idx) + self.img_size,
]